MAPLE CODE OF THE CUBIC ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION WITH BOX CONSTRAINTS

被引:0
|
作者
Pineda, M. Delgado [1 ]
Galperin, E. A. [2 ]
Guerra, P. Jimenez [1 ]
机构
[1] Univ Nacl Educ Distancia, Fac Ciencias, Dept Math Fundamentales, E-28040 Madrid, Spain
[2] Univ Quebec Montreal, Dept Math, C P 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada
来源
关键词
Cubic algorithm; Multiobjective optimization; Non-differentiable optimization; Pareto solutions; Set contraction algorithm;
D O I
10.3934/naco.2013.3.407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalization of the cubic algorithm is presented for global optimization of nonconvex nonsmooth multiobjective optimization programs min f(s) (x), s = 1,..., k, with box constraints x is an element of X = [a(1), b(1)]x ... x[a(n), b(n)]. This monotonic set contraction algorithm converges onto the entire exact Pareto set, if nonempty, and yields its approximation with given precision in a finite number of iterations. Simultaneously, approximations for the ideal point and for the function values over Pareto set are obtained. The method is implemented by Maple code, and this code does not create ill-conditioned situations. Results of numerical experiments are presented, with graphs, to illustrate the use of the code, and the solution set can be visualized in projections on coordinate planes. The code is ready for engineering and economic applications.
引用
收藏
页码:407 / 424
页数:18
相关论文
共 50 条
  • [31] Multiobjective Evolutionary Algorithm Portfolio: Choosing Suitable Algorithm for Multiobjective Optimization Problem
    Yuen, Shiu Yin
    Zhang, Xin
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 1967 - 1973
  • [32] QoS-Aware Multiobjective Optimization Algorithm for Web Services Selection with Deadline and Budget Constraints
    Han, Xianzhong
    Yuan, Yingchun
    Chen, Chen
    Wang, Kejian
    ADVANCES IN MECHANICAL ENGINEERING, 2014,
  • [33] IT-CEMOP: An iterative co-evolutionary algorithm for multiobjective optimization problem with nonlinear constraints
    Osman, M. S.
    Abo-Sinna, Mahmoud A.
    Mousa, A. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (01) : 373 - 389
  • [34] Using box indices in supporting comparison in multiobjective optimization
    Miettinen, Kaisa
    Molina, Julian
    Gonzalez, Mercedes
    Hernandez-Diaz, Alfredo
    Caballero, Rafael
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (01) : 17 - 24
  • [35] Noisy Multiobjective Black-Box Optimization using Bayesian Optimization
    Wang, Hongyan
    Xu, Hua
    Yuan, Yuan
    Deng, Junhui
    Sun, Xiaomin
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 239 - 240
  • [36] Multiobjective firefly algorithm for continuous optimization
    Yang, Xin-She
    ENGINEERING WITH COMPUTERS, 2013, 29 (02) : 175 - 184
  • [37] A multiobjective stochastic simulation optimization algorithm
    Gonzalez, Sebastian Rojas
    Jalali, Hamed
    Van Nieuwenhuyse, Inneke
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 284 (01) : 212 - 226
  • [38] Multiobjective multifactorial immune algorithm for multiobjective multitask optimization problems
    Xu, Zhiwei
    Zhang, Kai
    APPLIED SOFT COMPUTING, 2021, 107
  • [39] A simulated annealing algorithm for multiobjective optimization
    Suppapitnarm, A
    Seffen, KA
    Parks, GT
    Clarkson, PJ
    ENGINEERING OPTIMIZATION, 2000, 33 (01) : 59 - 85
  • [40] Biased Multiobjective Optimization and Decomposition Algorithm
    Li, Hui
    Zhang, Qingfu
    Deng, Jingda
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) : 52 - 66