MAPLE CODE OF THE CUBIC ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION WITH BOX CONSTRAINTS

被引:0
|
作者
Pineda, M. Delgado [1 ]
Galperin, E. A. [2 ]
Guerra, P. Jimenez [1 ]
机构
[1] Univ Nacl Educ Distancia, Fac Ciencias, Dept Math Fundamentales, E-28040 Madrid, Spain
[2] Univ Quebec Montreal, Dept Math, C P 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada
来源
关键词
Cubic algorithm; Multiobjective optimization; Non-differentiable optimization; Pareto solutions; Set contraction algorithm;
D O I
10.3934/naco.2013.3.407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalization of the cubic algorithm is presented for global optimization of nonconvex nonsmooth multiobjective optimization programs min f(s) (x), s = 1,..., k, with box constraints x is an element of X = [a(1), b(1)]x ... x[a(n), b(n)]. This monotonic set contraction algorithm converges onto the entire exact Pareto set, if nonempty, and yields its approximation with given precision in a finite number of iterations. Simultaneously, approximations for the ideal point and for the function values over Pareto set are obtained. The method is implemented by Maple code, and this code does not create ill-conditioned situations. Results of numerical experiments are presented, with graphs, to illustrate the use of the code, and the solution set can be visualized in projections on coordinate planes. The code is ready for engineering and economic applications.
引用
收藏
页码:407 / 424
页数:18
相关论文
共 50 条
  • [1] Global optimization in Rn with box constraints and applications:: A MAPLE code
    Pineda, MD
    Galperin, EA
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 38 (1-2) : 77 - 97
  • [2] An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints
    G. Cocchi
    G. Liuzzi
    A. Papini
    M. Sciandrone
    Computational Optimization and Applications, 2018, 69 : 267 - 296
  • [3] An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints
    Cocchi, G.
    Liuzzi, G.
    Papini, A.
    Sciandrone, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (02) : 267 - 296
  • [4] Cubic algorithm for global optimization with box and equality constraints and application to optimal allocation of resources
    Galperin, EA
    Ekel, PY
    Pereira, JG
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (1-2) : 63 - 76
  • [5] A genetic algorithm for multiobjective optimization problems with fuzzy constraints
    de Moura, L
    Yamakami, A
    Bonfim, TR
    COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2002, : 137 - 142
  • [6] Non-convex global optimization by the beta algorithm: A MAPLE code
    Delgado Pineda, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E769 - E777
  • [7] Multiobjective Artificial Bee Colony Algorithm for S-box Optimization
    Qin, Guanjie
    Cheng, Xuemin
    Ma, Jianshe
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 1738 - 1743
  • [8] Global optimization over general compact sets by the beta algorithm: A MAPLE code
    Pineda, M. Delgado
    Galperin, E. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (1-2) : 33 - 54
  • [9] MAPLE code for the gamma algorithm for global optimization of uncertain functions in economy and finance
    Delgado Pineda, M.
    Galperin, E. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) : 2951 - 2963
  • [10] A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments
    Liu, Guanzhi
    Pang, Xinfu
    Wan, Jishen
    MATHEMATICS, 2024, 12 (14)