CANONICAL DYNAMICS OF THE NOSE OSCILLATOR - STABILITY, ORDER, AND CHAOS

被引:260
|
作者
POSCH, HA
HOOVER, WG
VESELY, FJ
机构
来源
PHYSICAL REVIEW A | 1986年 / 33卷 / 06期
关键词
D O I
10.1103/PhysRevA.33.4253
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:4253 / 4265
页数:13
相关论文
共 50 条
  • [21] Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator
    Palanivel, J.
    Suresh, K.
    Sabarathinam, S.
    Thamilmaran, K.
    CHAOS SOLITONS & FRACTALS, 2017, 95 : 33 - 41
  • [22] Chaos and chaotic control in a fractional-order electronic oscillator
    Gao, X
    Yu, JB
    CHINESE PHYSICS, 2005, 14 (05): : 908 - 913
  • [23] Threshold for Chaos of a Duffing Oscillator with Fractional-Order Derivative
    Xing, Wuce
    Chen, Enli
    Chang, Yujian
    Wang, Meiqi
    SHOCK AND VIBRATION, 2019, 2019
  • [24] STABILITY AND CHAOS IN HAMILTONIAN-DYNAMICS
    ISOLA, S
    LIVI, R
    RUFFO, S
    VULPIANI, A
    PHYSICAL REVIEW A, 1986, 33 (02): : 1163 - 1170
  • [26] Stability and dynamics of a plastic softening oscillator
    Challamel, Noel
    Pijaudier-Cabot, Gilles
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (18-19) : 5867 - 5885
  • [27] Dynamics of a hybrid vibro-impact oscillator: canonical formalism
    Maor Farid
    Nonlinear Dynamics, 2021, 106 : 1769 - 1787
  • [28] Dynamics of a hybrid vibro-impact oscillator: canonical formalism
    Farid, Maor
    NONLINEAR DYNAMICS, 2021, 106 (03) : 1769 - 1787
  • [29] NOSE-HOOVER CHAINS - THE CANONICAL ENSEMBLE VIA CONTINUOUS DYNAMICS
    MARTYNA, GJ
    KLEIN, ML
    TUCKERMAN, M
    JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04): : 2635 - 2643
  • [30] Influence of Element Nominal Values on Chaos Oscillator Dynamics and Synchronization
    Cirjulina, Darja
    Babajans, Ruslans
    Tjukovs, Sergejs
    Anstrangs, Davis Daniels
    Litvinenko, Anna
    ADVANCES IN INFORMATION, ELECTRONIC AND ELECTRICAL ENGINEERING (AIEEE' 2019), 2019,