Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by exactly one vector. The resulting products are investigated by using the basic properties of the vector cross product.
机构:
Univ N Carolina, Dept Obstet & Gynecol, Div Maternal Fetal Med, 3009 Old Clin Bldg Campus Box 7570, Chapel Hill, NC 27599 USAThomas Jefferson Univ Hosp, Dept Obstet & Gynecol, Philadelphia, PA 19107 USA
Quist-Nelson, Johanna
论文数: 引用数:
h-index:
机构:
Gomez, Julie
De Vries, Bradley
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Publ Hlth, Sydney Local Hlth Dist, Sydney Inst Women Children & Their Families,Fac M, Sydney, NSW, AustraliaThomas Jefferson Univ Hosp, Dept Obstet & Gynecol, Philadelphia, PA 19107 USA
De Vries, Bradley
论文数: 引用数:
h-index:
机构:
Phipps, Hala
Verhaeghe, Caroline
论文数: 0引用数: 0
h-index: 0
机构:
Angers Univ Hosp, Dept Obstet & Gynecol, Angers, FranceThomas Jefferson Univ Hosp, Dept Obstet & Gynecol, Philadelphia, PA 19107 USA
Verhaeghe, Caroline
Berghella, Vincenzo
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Obstet & Gynecol, Div Maternal Fetal Med, 3009 Old Clin Bldg Campus Box 7570, Chapel Hill, NC 27599 USAThomas Jefferson Univ Hosp, Dept Obstet & Gynecol, Philadelphia, PA 19107 USA