ISOSCELES ORTHOGONAL TRIPLES IN LINEAR 2-NORMED SPACES

被引:7
|
作者
CHO, YJ
DIMINNIE, CR
FREESE, RW
ANDALAFTE, EZ
机构
[1] ST LOUIS UNIV,DEPT MATH,ST LOUIS,MO 63103
[2] ST BONAVENTURE UNIV,DEPT MATH,ST BONAVENTURE,NY 14778
[3] UNIV MISSOURI,DEPT MATH,ST LOUIS,MO 63121
关键词
D O I
10.1002/mana.19921570118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple (x, y, z) in a linear 2-normed space (X, parallel-to.,. parallel-to) is called an isosceles orthogonal triple, denoted \(x, y, z), if parallel-to x + y, z parallel-to = parallel-to x - y, z parallel-to, parallel-to x + z, y parallel-to = parallel-to x - z, y parallel-to, and parallel-to y + z, x parallel-to = parallel-to y - z, x parallel-to. \(.,.,.) is said to be homogeneous if \(x, y, z) implies \(ax, y, z) for all real a and it is additive if \(x1, y, z) and \(x2, y, z) imply that \(x1 + x2, y, z). In addition to developing some basic properties of \(.,.,.), this paper shows that under the assumption of strict convexity, every subspace of X of dimension less-than-or-equal-to 3 contains an isosceles orthogonal triple. Further, if (X, parallel-to.,.parallel-to) is strictly convex and \(.,.,.) is either homogeneous or additive, then (X, parallel-to.,.parallel-to) is a 2-inner product space.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [41] CERTAIN PROBLEMS IN LINEAR 2-NORMED SPACE
    GAHLER, S
    SIDDIQI, AH
    GUPTA, SC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A494 - A494
  • [42] 2-Proximinality in Generalized 2-Normed Spaces
    Rezapour, Sh.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2009, 33 (01) : 109 - 113
  • [43] Strongly Lacunary Ward Continuity in 2-Normed Spaces
    Cakalli, Huseyin
    Ersan, Sibel
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [44] On I-Cauchy sequences in 2-normed spaces
    Gurdal, Mehmet
    Acik, Isil
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (02): : 349 - 354
  • [45] ON I-CONVERGENCE IN RANDOM 2-NORMED SPACES
    Mursaleen, M.
    Alotaibi, Abdullah
    MATHEMATICA SLOVACA, 2011, 61 (06) : 933 - 940
  • [46] Lacunary statistical convergence in random 2-normed spaces
    Mohiuddine, S. A.
    Aiyub, M.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (03): : 581 - 585
  • [47] On Rough Convergence in 2-Normed Spaces and Some Properties
    Arslan, Mukaddes
    Dundar, Erdinc
    FILOMAT, 2019, 33 (16) : 5077 - 5086
  • [48] Ideal convergence in 2-fuzzy 2-normed spaces
    Rashid, Mohammad H. M.
    Kocinac, Ljubisas D. R.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (01): : 149 - 162
  • [49] 2-FARTHEST ORTHOGONALITY IN GENERALIZED 2-NORMED SPACES
    Abad, S. M. Mousav Shams
    Mazaheri, H.
    Dehghan, M. A.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2018, 24 (01) : 71 - 78
  • [50] Generalized statistical convergence and some sequence spaces in 2-normed spaces
    Belen, Cemal
    Yildirim, Mustafa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 513 - 519