ISOSCELES ORTHOGONAL TRIPLES IN LINEAR 2-NORMED SPACES

被引:7
|
作者
CHO, YJ
DIMINNIE, CR
FREESE, RW
ANDALAFTE, EZ
机构
[1] ST LOUIS UNIV,DEPT MATH,ST LOUIS,MO 63103
[2] ST BONAVENTURE UNIV,DEPT MATH,ST BONAVENTURE,NY 14778
[3] UNIV MISSOURI,DEPT MATH,ST LOUIS,MO 63121
关键词
D O I
10.1002/mana.19921570118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A triple (x, y, z) in a linear 2-normed space (X, parallel-to.,. parallel-to) is called an isosceles orthogonal triple, denoted \(x, y, z), if parallel-to x + y, z parallel-to = parallel-to x - y, z parallel-to, parallel-to x + z, y parallel-to = parallel-to x - z, y parallel-to, and parallel-to y + z, x parallel-to = parallel-to y - z, x parallel-to. \(.,.,.) is said to be homogeneous if \(x, y, z) implies \(ax, y, z) for all real a and it is additive if \(x1, y, z) and \(x2, y, z) imply that \(x1 + x2, y, z). In addition to developing some basic properties of \(.,.,.), this paper shows that under the assumption of strict convexity, every subspace of X of dimension less-than-or-equal-to 3 contains an isosceles orthogonal triple. Further, if (X, parallel-to.,.parallel-to) is strictly convex and \(.,.,.) is either homogeneous or additive, then (X, parallel-to.,.parallel-to) is a 2-inner product space.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 50 条
  • [1] STRICTLY CONVEX LINEAR 2-NORMED SPACES
    HA, KS
    CHO, YJ
    KIM, SS
    KHAN, MS
    MATHEMATISCHE NACHRICHTEN, 1990, 146 : 7 - 16
  • [2] STRICTLY CONVEX LINEAR 2-NORMED SPACES
    DIMINNIE, C
    GAHLER, S
    WHITE, A
    MATHEMATISCHE NACHRICHTEN, 1974, 59 (1-6) : 319 - 324
  • [3] Apollonious Identity in Linear 2-Normed Spaces
    Acikgoz, Mehmet
    Karakus, Yusuf
    Aslan, Nurgul
    Koskeroglu, Nurten
    Araci, Serkan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 173 - +
  • [4] The Aleksandrov problem in linear 2-normed spaces
    Chu, HY
    Park, CG
    Park, WG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) : 666 - 672
  • [5] ON TRIPLE SEQUENCES IN GRADUAL 2-NORMED LINEAR SPACES
    Demirci, Isil Acik
    Dermencioglu, Gulsum
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (02): : 291 - 306
  • [6] On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces
    Ji, Donghai
    Li, Jingying
    Wu, Senlin
    RESULTS IN MATHEMATICS, 2011, 59 (1-2) : 157 - 162
  • [7] On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces
    Donghai Ji
    Jingying Li
    Senlin Wu
    Results in Mathematics, 2011, 59 : 157 - 162
  • [8] Complex 2-normed linear spaces and extension of linear 2-functionals
    Lal, SN
    Bhattacharya, S
    Sreedhar, C
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (01): : 35 - 53
  • [9] CONTINUITY AND BOUNDEDNESS OF LINEAR OPERATORS ON NEUTROSOPHIC 2-NORMED SPACES
    Murtaza, Sajid
    Sharma, Archana
    Kumar, Vijay
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (01): : 137 - 153
  • [10] On the Mazur-Ulam problem in linear 2-normed spaces
    Chu, Hahng-Yun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) : 1041 - 1045