ON THE QUATERNIONIC CURVES ACCORDING TO PARALLEL TRANSPORT FRAME

被引:0
|
作者
Soyfidan, T. [1 ]
Parlatici, H. [2 ]
Gungor, M. A. [2 ]
机构
[1] Erzincan Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey
[2] Sakarya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey
来源
关键词
Parallel transport frame; quaternionic curves; quaternionic M-3-slant helix; rotations; quaternionic space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have studied parallel transport frame for a quaternionic curve in E-3 and E-4. Firstly, we have defined a new kind of slant helix with respect to parallel transport frame and given some necessary and sufficient conditions for the quaternionic slant helix in E-3. We have introduced a new definition of harmonic curvature functions in terms of M-3 according to parallel transport frame and defined quaternionic M-3-slant helix by using the new harmonic curvature functions in E-4.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [31] Generalized Legendre curves and quaternionic multiplication
    Deines, Alyson
    Fuselier, Jenny G.
    Long, Ling
    Swisher, Holly
    Tu, Fang-Ting
    JOURNAL OF NUMBER THEORY, 2016, 161 : 175 - 203
  • [32] Differential Equations of Null Quaternionic Curves
    Kahraman T.
    International Journal of Applied and Computational Mathematics, 2020, 6 (3)
  • [33] Genus 2 curves with quaternionic multiplication
    Baba, Srinath
    Granath, Hakan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (04): : 734 - 757
  • [34] Null Quaternionic Bertrand Partner Curves
    Tanju Kahraman
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1511 - 1515
  • [35] Generalized planar curves and quaternionic geometry
    Hrdina, Jaroslav
    Slovak, Jan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (04) : 349 - 360
  • [36] Characterizations for the Dual Split Quaternionic Curves
    Aksoy, A. Tuna
    Coken, A. C.
    ACTA PHYSICA POLONICA A, 2017, 132 (03) : 905 - 908
  • [37] On Compact Affine Quaternionic Curves and Surfaces
    Graziano Gentili
    Anna Gori
    Giulia Sarfatti
    The Journal of Geometric Analysis, 2021, 31 : 1073 - 1092
  • [38] Null Quaternionic Bertrand Partner Curves
    Kahraman, Tanju
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1511 - 1515
  • [39] ASSOCIATED CURVES ACCORDING TO BISHOP FRAME IN 4-DIMENSIONAL EUCLIDEAN SPACE
    Yeneroglu, Mustafa
    Duyan, Ahmet
    JOURNAL OF SCIENCE AND ARTS, 2024, (01): : 105 - 110
  • [40] Dual Spherical Curves According to Bishop Frame in the Dual 3-Space
    Saad, M. Khalifa
    Mohamed, S. A.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (04): : 1605 - 1617