LOCAL HEIGHT FUNCTIONS AND THE MORDELL-WEIL THEOREM FOR DRINFELD MODULES

被引:0
|
作者
POONEN, B
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an analogue for Drinfeld modules of the Mordell-Weil theorem on abelian varieties over number fields. Specifically, we show that if phi is a Drinfeld A-module over a finite extension L of the fraction field of A, then L considered as an A-module via phi is the direct sum of a free A-module of rank aleph(0) with a finite torsion module. The main tool is the canonical global height function defined by Denis. By developing canonical local height functions, we are also able to show that if phi is defined over the ring of S-integers O-s in L, then O-s and L/O-s considered as A-modules via phi also are each isomorphic to the direct sum of a free A-module of rank aleph(0) with a finite torsion module. If M is a nontrivial finite separable extension of L, then the quotient module M/L as well is isomorphic to the direct sum of a free A-module of rank aleph 0 with a finite torsion module. Finally, the original result holds if L is replaced by its perfection.
引用
收藏
页码:349 / 368
页数:20
相关论文
共 50 条
  • [31] Elliptic threefolds with high Mordell-Weil rank
    Grassi, Antonela
    Weigand, Timo
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2022, 16 (04) : 733 - 759
  • [32] On certain sequences in Mordell-Weil type groups
    Baranczuk, Stefan
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23
  • [33] On the number of Mordell-Weil generators for cubic surfaces
    Siksek, Samir
    JOURNAL OF NUMBER THEORY, 2012, 132 (11) : 2610 - 2629
  • [34] A note on the Mordell-Weil rank modulo n
    Dokchitser, Tim
    Dokchitser, Vladimir
    JOURNAL OF NUMBER THEORY, 2011, 131 (10) : 1833 - 1839
  • [35] Mordell-Weil lattice via string junctions
    Fukae, M
    Yamada, Y
    Yang, SK
    NUCLEAR PHYSICS B, 2000, 572 (1-2) : 71 - 94
  • [36] Jumps in Mordell-Weil rank and arithmetic surjectivity
    Graber, T
    Harris, J
    Mazur, B
    Starr, J
    ARITHMETIC OF HIGHER-DIMENSIONAL ALGEBRAIC VARIETIES, 2004, 226 : 141 - 147
  • [37] Symplectic group lattices as Mordell-Weil sublattices
    Dummigan, N
    JOURNAL OF NUMBER THEORY, 1996, 61 (02) : 365 - 387
  • [38] Torsion in Mordell-Weil groups of Fermat Jacobians
    Tzermias, P
    COMPOSITIO MATHEMATICA, 1997, 106 (01) : 1 - 9
  • [39] Torsion parts of Mordell-Weil groups of Fermat Jacobians
    Tzermias, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (07) : 359 - 369
  • [40] Mordell-Weil torsion in the mirror of multi-sections
    Paul-Konstantin Oehlmann
    Jonas Reuter
    Thorsten Schimannek
    Journal of High Energy Physics, 2016