ASYMPTOTICALLY MINIMAX ESTIMATION OF A CONSTRAINED POISSON VECTOR VIA POLYDISK TRANSFORMS

被引:0
|
作者
JOHNSTONE, IM
MACGIBBON, KB
机构
[1] UNIV QUEBEC,DEPT MATH & INFORMAT,MONTREAL H3C 3P8,QUEBEC,CANADA
[2] UNIV BATH,BATH BA2 7AY,AVON,ENGLAND
关键词
POLYDISK TRANSFORM; 2ND-ORDER MINIMAX; LAPLACE OPERATOR; PRINCIPAL EIGENVALUE; FISHER INFORMATION; MINIMAX RISK;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that the mean sigma of a vector of independent Poisson variates (X1, . . ., X(p)) lies in a subset mT of R(p), where T is a bounded domain and m > 0. We study the asymptotic behavior of the minimax risk rho(mT) and the construction of asymptotic minimax estimators as m arrow pointing up and to the right infinity, using the information normalized loss [GRAPHICS] With the use of the polydisc transform, a many-to-one mapping from R2p to R+p, we show that rho(mT) = p-m-1 lambda(OMEGA)+o(m-1), where lambda(OMEGA) is the principal eigenvalue for the Laplace operator on the pre-image OMEGA of T under this transform. The proofs exploit the connection between p-dimensional Poisson estimation in T and 2p-dimensional Gaussian estimation in OMEGA.
引用
下载
收藏
页码:289 / 319
页数:31
相关论文
共 50 条