Real-time Discrete Nonlinear Identification via Recurrent High Order Neural Networks

被引:0
|
作者
Alanis, Alma Y. [1 ]
Sanchez, Edgar N. [2 ]
Loukianov, Alexander G. [2 ]
机构
[1] Univ Guadalajara, CUCEI, Apartado Postal 51-71,Col Las Aguilas, Zapopan 45080, Jalisco, Mexico
[2] CINVESTAV, Unidad Guadalajara, Guadalajara 45091, Jalisco, Mexico
来源
COMPUTACION Y SISTEMAS | 2010年 / 14卷 / 01期
关键词
Neural identification; Extended Kalman filtering learning; Discrete-time nonlinear systems; Three phase induction motor;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the discrete-time nonlinear system identification via Recurrent High Order Neural Networks, trained with an extended Kalman filter (EKF) based algorithm. The paper also includes the respective stability analysis on the basis of the Lyapunov approach for the whole scheme. Applicability of the scheme is illustrated via real-time implementation for a three phase induction motor.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 50 条
  • [41] Approximation of recurrent neural networks to nonlinear time-variant discrete systems
    Li, Xiao-Dong
    Yang, Guo-Hua
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2002, 41 (05):
  • [42] Identification of nonlinear time varying systems using recurrent neural networks
    Zou, GF
    Wang, ZO
    8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 611 - 615
  • [43] Adaptive Nonlinear Systems Identification via Discrete Multi-Time Scales Dynamic Neural Networks
    Xie, Wei-Dong
    Fu, Zhi-Jun
    Xie, Wen-Fang
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2016, 22 (01): : 111 - 123
  • [44] Abnormal Gait Recognition in Real-Time using Recurrent Neural Networks
    Jinnovart, Thanaporn
    C, Xiongcai
    Thonglek, Kundjanasith
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 972 - 977
  • [45] Real-Time Prediction of Taxi Demand Using Recurrent Neural Networks
    Xu, Jun
    Rahmatizadeh, Rouhollah
    Boloni, Ladislau
    Turgut, Damla
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (08) : 2572 - 2581
  • [46] Recurrent neural networks for real-time prediction of TBM operating parameters
    Gao, Xianjie
    Shi, Maolin
    Song, Xueguan
    Zhang, Chao
    Zhang, Hongwei
    AUTOMATION IN CONSTRUCTION, 2019, 98 : 225 - 235
  • [47] Multilayer recurrent neural networks for real-time robust pole assignment
    Hu, SQ
    Wang, J
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1104 - 1108
  • [48] On the Adaptability of Recurrent Neural Networks for Real-Time Jazz Improvisation Accompaniment
    Kritsis, Kosmas
    Kylafi, Theatina
    Kaliakatsos-Papakostas, Maximos
    Pikrakis, Aggelos
    Katsouros, Vassilis
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 3
  • [49] On the Identification and Generation of Discrete-Time Chaotic Systems with Recurrent Neural Networks
    Lee, Seungwon
    Won, Sung Hwan
    Song, Iickho
    Yoon, Seokho
    Kim, Sun Yong
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (04) : 1699 - 1706
  • [50] On the Identification and Generation of Discrete-Time Chaotic Systems with Recurrent Neural Networks
    Seungwon Lee
    Sung Hwan Won
    Iickho Song
    Seokho Yoon
    Sun Yong Kim
    Journal of Electrical Engineering & Technology, 2019, 14 : 1699 - 1706