A ONE-DIMENSIONAL DYNAMIC CONTACT PROBLEM IN LINEAR VISCOELASTICITY

被引:13
|
作者
KIM, JU
机构
[1] Department of Mathematics, Virginia Polytechnic Institute, State University, Blacksburg, Virginia
关键词
Contact Problems - Initial Value Problems;
D O I
10.1002/mma.1670130106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial‐boundary value problem associated with a linear viscoelastic bar which moves along its axis and against a stationary obstacle perpendicular to the axis is discussed. The existence of a solution is established by the penalty method and a multiplier technique. The uniqueness of the solution is also proved in a special case. Copyright © 1990 John Wiley & Sons, Ltd
引用
收藏
页码:55 / 79
页数:25
相关论文
共 50 条
  • [31] Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer
    Huang, Rukai
    Ding, Shenghu
    Zhang, Xin
    Li, Xing
    [J]. ARCHIVE OF APPLIED MECHANICS, 2021, 91 (12) : 4693 - 4716
  • [32] Steady state thermoelastic contact problem of one-dimensional hexagonal quasicrystals
    Ma, Lili
    Zhang, Xin
    Lv, Chaofan
    Chen, Qiwenli
    Li, Xing
    Ding, Shenghu
    [J]. JOURNAL OF THERMAL STRESSES, 2022, 45 (03) : 214 - 233
  • [33] Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer
    Rukai Huang
    Shenghu Ding
    Xin Zhang
    Xing Li
    [J]. Archive of Applied Mechanics, 2021, 91 : 4693 - 4716
  • [34] A dynamic unilateral contact problem with adhesion and friction in viscoelasticity
    Marius Cocou
    Mathieu Schryve
    Michel Raous
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 721 - 743
  • [35] A dynamic unilateral contact problem with adhesion and friction in viscoelasticity
    Cocou, Marius
    Schryve, Mathieu
    Raous, Michel
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (04): : 721 - 743
  • [36] GLOBAL EXISTENCE AND ASYMPTOTICS IN ONE-DIMENSIONAL NONLINEAR VISCOELASTICITY
    HRUSA, WJ
    NOHEL, JA
    [J]. LECTURE NOTES IN PHYSICS, 1984, 195 : 165 - 187
  • [37] Determining the Relaxation Kernel in Nonlinear One-Dimensional Viscoelasticity
    Grasselli, M.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (02): : 247 - 266
  • [38] A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity
    Parisis, Kostas
    Dimosthenis, Vlasis
    Kouris, Leonidas
    Konstantinidis, Avraam
    Aifantis, Elias C.
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [39] ONE-DIMENSIONAL INVERSE COEFFICIENT PROBLEMS OF ANISOTROPIC VISCOELASTICITY
    Totieva, Zhanna Dmitrievna
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 786 - 811
  • [40] Travelling wave solutions of a one-dimensional viscoelasticity model
    Marquez, A. P.
    Bruzon, M. S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (1-2) : 30 - 39