PHASE PROPERTIES OF HIGH-ORDER, ALMOST P-STABLE FORMULAS

被引:220
|
作者
THOMAS, RM
机构
[1] UNIV MANCHESTER,INST SCI & TECHNOL,DEPT MATH,MANCHESTER M60 1QD,LANCS,ENGLAND
[2] UNIV LEEDS,DEPT COMP STUDIES,LEEDS LS2 9JT,W YORKSHIRE,ENGLAND
来源
BIT | 1984年 / 24卷 / 02期
关键词
D O I
10.1007/BF01937488
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [21] Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order
    J.M. Franco
    I. Gómez
    L. Rández
    Numerical Algorithms, 2001, 26 : 347 - 363
  • [22] An Optimized Multistage Complete in Phase P-Stable Algorithm
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan, V
    Bondarenko, Aleksandr A.
    Simos, Theodore E.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (02) : 385 - 438
  • [23] The sixth order P-stable method with minimal phase lag for a second order initial-value problem
    Xiang, Kaili
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [24] P-stable Boundary Value Methods for Second Order IVPs
    Aceto, Lidia
    Ghelardoni, Paolo
    Magherini, Cecilia
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1165 - 1168
  • [25] A two-step singularly P-stable method with high phase and large stability properties for problems in chemistry
    Dmitry Generalov
    Ekaterina Tsvetova
    Ruslan Fedorov
    Vladislav Kovalnogov
    T. E. Simos
    Journal of Mathematical Chemistry, 2022, 60 : 475 - 501
  • [26] A two-step singularly P-stable method with high phase and large stability properties for problems in chemistry
    Generalov, Dmitry
    Tsvetova, Ekaterina
    Fedorov, Ruslan
    Kovalnogov, Vladislav
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (03) : 475 - 501
  • [27] Phase properties of the cutoff high-order harmonics
    Khokhlova, M. A.
    Strelkov, V. V.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [28] Parallel implementation of curvilinear high-order formulas
    Ladeinde, F
    Cai, X
    Visbal, MR
    Gaitonde, D
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (06) : 467 - 485
  • [29] GENERALIZED PROPAGATION FORMULAS OF ARBITRARILY HIGH-ORDER
    GLASNER, M
    YEVICK, D
    HERMANSSON, B
    JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (11): : 8266 - 8272
  • [30] Efficient eighth order P-stable methods for second order initial value problems
    Khiyal, MSH
    Thomas, RM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1997, 64 (1-2) : 119 - 151