ON THE MONOTONICITY OF THE HIGHER-ORDER SCHULZ METHOD

被引:2
|
作者
PETKOVIC, LD [1 ]
PETKOVIC, MS [1 ]
机构
[1] UNIV NIS, FAC ELECTR ENGN, YU-18000 NIS, YUGOSLAVIA
来源
关键词
D O I
10.1002/zamm.19880680922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:455 / 456
页数:2
相关论文
共 50 条
  • [31] A Higher-Order Polynomial Method for SPECT Reconstruction
    Jiang, Ying
    Li, Si
    Xu, Yuesheng
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1271 - 1283
  • [32] HIGHER-ORDER PERTURBATION METHOD IN REACTOR CALCULATIONS
    MITANI, H
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1973, 51 (02) : 180 - 188
  • [33] A higher-order generalization of the NPK-method
    Birkelbach, Felix
    Deutsch, Markus
    Flegkas, Stylianos
    Franz, Winter
    Werner, Andreas
    [J]. THERMOCHIMICA ACTA, 2018, 661 : 27 - 33
  • [34] A higher-order method for stationary shock problems
    Vulanovic, R
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 108 (2-3) : 139 - 152
  • [35] Method of Higher-order Operators for Quantum Optomechanics
    Sina Khorasani
    [J]. Scientific Reports, 8
  • [36] A multigrid method with higher-order discretization schemes
    Varonos, AA
    Bergeles, GC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (04) : 395 - 420
  • [37] Comparative higher-order risk aversion and higher-order prudence
    Wong, Kit Pong
    [J]. ECONOMICS LETTERS, 2018, 169 : 38 - 42
  • [38] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    [J]. PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [39] A CONSISTENT HIGHER-ORDER THEORY WITHOUT A (HIGHER-ORDER) MODEL
    FORSTER, T
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (05): : 385 - 386
  • [40] Higher-order symmetric duality with higher-order generalized invexity
    Padhan S.K.
    Nahak C.
    [J]. Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 407 - 420