A HYBRID ALGORITHM FOR SOLVING POLYNOMIAL ZERO-ONE MATHEMATICAL-PROGRAMMING PROBLEMS

被引:5
|
作者
SNYDER, WS [1 ]
CHRISSIS, JW [1 ]
机构
[1] USAF,INST TECHNOL,DEPT OPERAT SCI,WRIGHT PATTERSON AFB,OH 45433
关键词
D O I
10.1080/07408179008964168
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents analgorithm for solving large-scale polynomial (nonlinear) zero-one programming problems. The procedure incorporates a mixture of pseudo-Boolean concepts and time-proven implicit enumeration procedures. Significant savings in the time required to obtain optimal solutions results from the use of a minimum cover to analyze the future effect of a particular implicit enumeration iteration. Additional improvement is obtained through the use of a term ranking strategy to control the arborization of the implicit enumeration process. Computational experience demonstrates that this algorithm can reduce the magnitude of the computer solution time for large problems from several minutes to a matter of a few seconds. © 1990 Taylor & Francis Group, LLC.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 50 条
  • [41] ZERO-ONE HYPERBOLIC PROGRAMMING
    FLORIAN, M
    ROBILLARD, P
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1971, 5 (NV1): : 3 - 9
  • [42] An improved linearization strategy for zero-one quadratic programming problems
    Hanif D. Sherali
    J. Cole Smith
    [J]. Optimization Letters, 2007, 1 : 33 - 47
  • [43] A tight linearization strategy for zero-one quadratic programming problems
    Gharibi, Wajeb
    Xia, Yong
    [J]. International Journal of Computer Science Issues, 2012, 9 (03): : 294 - 299
  • [44] REDUCTION ALGORITHM FOR ZERO-ONE SINGLE KNAPSACK PROBLEMS
    INGARGIOLA, GP
    KORSH, JF
    [J]. MANAGEMENT SCIENCE SERIES B-APPLICATION, 1973, 20 (04): : 460 - 463
  • [45] AN ALGORITHM FOR LARGE ZERO-ONE KNAPSACK-PROBLEMS
    BALAS, E
    ZEMEL, E
    [J]. OPERATIONS RESEARCH, 1980, 28 (05) : 1130 - 1154
  • [46] An improved linearization strategy for zero-one quadratic programming problems
    Sherali, Hanif D.
    Smith, J. Cole
    [J]. OPTIMIZATION LETTERS, 2007, 1 (01) : 33 - 47
  • [47] IMPROPER MATHEMATICAL-PROGRAMMING PROBLEMS
    EREMIN, II
    VATOLIN, AA
    [J]. PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1989, 18 (06): : 359 - 380
  • [48] SOLUTION FOR ONE CLASS OF MATHEMATICAL-PROGRAMMING PROBLEMS BASED ON GMDH
    PONOMARENKO, VS
    [J]. AVTOMATIKA, 1980, (01): : 13 - 19
  • [49] A BRANCH AND BOUND ALGORITHM FOR EXTREME POINT MATHEMATICAL-PROGRAMMING PROBLEMS
    SEN, S
    SHERALI, HD
    [J]. DISCRETE APPLIED MATHEMATICS, 1985, 11 (03) : 265 - 280
  • [50] AN APPROACH TO ZERO-ONE INTEGER PROGRAMMING
    CABOT, AV
    HURTER, AP
    [J]. OPERATIONS RESEARCH, 1968, 16 (06) : 1206 - &