An application of Hamiltonian neurodynamics using Pontryagin's Maximum (Minimum) Principle

被引:0
|
作者
Koshizen, T [1 ]
Fulcher, J [1 ]
机构
[1] UNIV WOLLONGONG,DEPT COMP SCI,WOLLONGONG,NSW 2522,AUSTRALIA
关键词
D O I
10.1142/S0129065795000287
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical optimal control methods, notably Pontryagin's Maximum (Minimum) Principle (PMP) can be employed, together with Hamiltonians, to determine optimal system weights in Artificial Neural dynamical systems. A new learning rule based on weight equations derived using PMP is shown to be suitable for both discrete- and continuous-time systems, and moreover, can also be applied to feedback networks. Preliminary testing shows that this PMP learning rule compares favorably with Standard BackPropagation (SEP) on the XOR problem.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 50 条
  • [21] Optimal control using pontryagin's maximum principle and dynamic programming
    Saerens B.
    Diehl M.
    Van Den Bulck E.
    [J]. Lecture Notes in Control and Information Sciences, 2010, 402 : 119 - 138
  • [22] The hybrid maximum principle is a consequence of pontryagin maximum principle
    Dmitruk, A. V.
    Kaganovich, A. M.
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (11) : 964 - 970
  • [23] Q-learning and Pontryagin's Minimum Principle
    Mehta, Prashant
    Meyn, Sean
    [J]. PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3598 - 3605
  • [24] A Generalization of Michel’s Result on the Pontryagin Maximum Principle
    Joël Blot
    Hasan Yilmaz
    [J]. Journal of Optimization Theory and Applications, 2019, 183 : 792 - 812
  • [25] On certain minimax problems and Pontryagin’s maximum principle
    Gunnar Aronsson
    [J]. Calculus of Variations and Partial Differential Equations, 2010, 37 : 99 - 109
  • [26] A New Discrete Analogue of Pontryagin's Maximum Principle
    Mardanov, M. J.
    Melikov, T. K.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (03) : 549 - 551
  • [27] On certain minimax problems and Pontryagin's maximum principle
    Aronsson, Gunnar
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) : 99 - 109
  • [28] Pontryagin's maximum principle via singular perturbations
    Grammel, G
    [J]. CONTROL AND ESTIMATION OF DISTRIBUTED PARAMETER SYSTEMS, 2003, 143 : 189 - 201
  • [29] EXTENSIONS OF PONTRYAGIN MAXIMUM PRINCIPLE
    KLOTZLER, R
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1990, 143 : 321 - 331
  • [30] Optimal Control of a Network of Power Microgrids Using the Pontryagin's Minimum Principle
    Dagdougui, Hanane
    Ouammi, Ahmed
    Sacile, Roberto
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (05) : 1942 - 1948