PRICING STOCK OPTIONS USING BLACK-SCHOLES AND FUZZY SETS

被引:1
|
作者
Buckley, James J. [1 ]
Eslami, Esfandiar [2 ,3 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
[2] Shahid Bahonar Univ Kerman, Ctr Excellence Fuzzy Syst & Applicat, Kerman, Iran
[3] Inst Studies Theoret Phys & Math IPM, Tehran, Iran
关键词
Pricing European options; Black-Scholes; fuzzy numbers;
D O I
10.1142/S1793005708001008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the basic Black-Scholes equation for pricing European stock options but we allow some of the parameters in the model to be uncertain and we model this uncertainty using fuzzy numbers. We compute the fuzzy number for the call value of option with and without uncertain dividends. This fuzzy set displays the uncertainty in the option's value due to the uncertainty in the input values to the model. We also correct an error in a recent paper which also fuzzified the Black-Scholes equation.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 50 条
  • [11] Pricing stock options using fuzzy sets
    Buckley, J. J.
    Eslami, E.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2007, 4 (02): : 1 - 14
  • [12] Two stock options at the races: Black-Scholes forecasts
    Oshanin, G.
    Schehr, G.
    QUANTITATIVE FINANCE, 2012, 12 (09) : 1325 - 1333
  • [13] Bifractional Black-Scholes Model for Pricing European Options and Compound Options
    Feng XU
    Journal of Systems Science and Information, 2020, 8 (04) : 346 - 355
  • [14] Is It Reasonable to Price Options in China's Stock Market by Black-Scholes Option Pricing Formula?
    Yin, Xiangfei
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 874 - 877
  • [15] Pricing of basket options in subdiffusive fractional Black-Scholes model
    Karipova, Gulnur
    Magdziarz, Marcin
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 245 - 253
  • [16] Pricing American call options using the Black-Scholes equation with a nonlinear volatility function
    Grossinho, Maria do Rosario
    Kord, Yaser Faghan
    Sevcovic, Daniel
    JOURNAL OF COMPUTATIONAL FINANCE, 2020, 23 (04) : 93 - 113
  • [17] Pricing black-scholes options with correlated credit risk and jump risk
    Xu, Weidong
    Xu, Weijun
    Xiao, Weilin
    APPLIED ECONOMICS LETTERS, 2015, 22 (02) : 87 - 93
  • [18] Reduced Basis Methods for Pricing Options with the Black-Scholes and Heston Models
    Burkovska, O.
    Haasdonk, B.
    Salomon, J.
    Wohlmuth, B.
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2015, 6 (01): : 685 - 712
  • [19] BLACK-SCHOLES PRICING PROBLEM - COMMENT
    MIKHEEV, LV
    JOURNAL DE PHYSIQUE I, 1995, 5 (02): : 217 - 218
  • [20] Quanto Pricing beyond Black-Scholes
    Fink, Holger
    Mittnik, Stefan
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (03)