Construction of bivariate asymmetric copulas

被引:7
|
作者
Mukherjee, Saikat [1 ]
Lee, Youngsaeng [2 ]
Kim, Jong-Min [3 ]
Jang, Jun [4 ]
Park, Jeong-Soo [2 ]
机构
[1] Natl Inst Technol, Dept Math, Delhi, India
[2] Chonnam Natl Univ, Dept Stat, 77 Yongbong Ro, Gwangju 61186, South Korea
[3] Univ Minnesota, Div Sci & Math, Morris, MN 56267 USA
[4] Chungnam Natl Univ, Ctr Informat Anal, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Cramer-von Mises statistics; empirical copula; Fourier copula; maximum pseudo-likelihood estimation; parametric bootstrap; pseudo-observations;
D O I
10.29220/CSAM.2018.25.2.217
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Copulas are a tool for constructing multivariate distributions and formalizing the dependence structure between random variables. From copula literature review, there are a few asymmetric copulas available so far while data collected from the real world often exhibit asymmetric nature. This necessitates developing asymmetric copulas. In this study, we discuss a method to construct a new class of bivariate asymmetric copulas based on products of symmetric (sometimes asymmetric) copulas with powered arguments in order to determine if the proposed construction can offer an added value for modeling asymmetric bivariate data. With these newly constructed copulas, we investigate dependence properties and measure of association between random variables. In addition, the test of symmetry of data and the estimation of hyper-parameters by the maximum likelihood method are discussed. With two real example such as car rental data and economic indicators data, we perform the goodness-of-fit test of our proposed asymmetric copulas. For these data, some of the proposed models turned out to be successful whereas the existing copulas were mostly unsuccessful. The method of presented here can be useful in fields such as finance, climate and social science.
引用
收藏
页码:217 / 234
页数:18
相关论文
共 50 条
  • [41] Derivatives and Fisher information of bivariate copulas
    Schepsmeier, Ulf
    Stoeber, Jakob
    STATISTICAL PAPERS, 2014, 55 (02) : 525 - 542
  • [42] A family of bivariate exponential distributions and their copulas
    Nair, N. Unnikrishnan
    Sankaran, P. G.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2014, 76 (01): : 1 - 18
  • [43] Fitting bivariate loss distributions with copulas
    Klugman, SA
    Parsa, R
    INSURANCE MATHEMATICS & ECONOMICS, 1999, 24 (1-2): : 139 - 148
  • [44] A new family of symmetric bivariate copulas
    Durante, Fabrizio
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (03) : 195 - 198
  • [45] A generalization of the Archimedean class of bivariate copulas
    Durante, Fabrizio
    Quesada-Molina, Jose Juan
    Sempi, Carlo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (03) : 487 - 498
  • [46] A family of bivariate exponential distributions and their copulas
    Unnikrishnan Nair N.
    Sankaran P.G.
    Sankhya B, 2014, 76 (1) : 1 - 18
  • [47] A new extension of bivariate FGM copulas
    Cécile Amblard
    Stéphane Girard
    Metrika, 2009, 70 : 1 - 17
  • [48] A semiparametric family of symmetric bivariate copulas
    Amblard, C
    Girard, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (02): : 129 - 132
  • [49] A new extension of bivariate FGM copulas
    Amblard, Cecile
    Girard, Stephane
    METRIKA, 2009, 70 (01) : 1 - 17
  • [50] Derivatives and Fisher information of bivariate copulas
    Ulf Schepsmeier
    Jakob Stöber
    Statistical Papers, 2014, 55 : 525 - 542