ON (K=3/4) COHERENT STATES FOR THE HARMONIC-OSCILLATOR

被引:0
|
作者
DEBERGH, N
机构
[1] Phys. Theor. et Math., Liege Univ.
来源
关键词
D O I
10.1088/0305-4470/23/2/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new construction of Perelomov's generalised coherent states (1986) is considered for one-dimensional harmonic oscillators admitting the Heisenberg-Weyl group as invariance Lie group. Exploiting the Niederer maximal kinematical invariance group (1973) for such physical systems, the author deduce further characteristics on the Heisenberg states through the use of the fundamental Perelomov state mod k, k) with k=3/4. The author explicitly gets new normalisation factor and measure for the Heisenberg generalised coherent states. The real Lie algebras so(2, 1) Square Operator h(2), so(2, 1) and h(2) play a prominent role in this study.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条
  • [31] DAMPED HARMONIC-OSCILLATOR
    HUGUENIN, P
    [J]. HELVETICA PHYSICA ACTA, 1978, 51 (03): : 346 - 353
  • [32] ON REDUCTION OF THE 4-DIMENSIONAL HARMONIC-OSCILLATOR
    IWAI, T
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) : 1628 - 1632
  • [33] ATOMIC HARMONIC OSCILLATOR COHERENT STATES
    BOWDEN, CM
    GILMORE, R
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (01): : 64 - 64
  • [34] Coherent states for the nonlinear harmonic oscillator
    Ghosh, Subir
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
  • [35] TIME EVOLUTION OF MINIMUM UNCERTAINTY STATES OF A HARMONIC-OSCILLATOR
    GERSCH, HA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1992, 60 (11) : 1024 - 1030
  • [36] THE SIMPLEX STRUCTURE OF THE CLASSICAL STATES OF THE QUANTUM HARMONIC-OSCILLATOR
    BACH, A
    LUXMANNELLINGHAUS, U
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) : 553 - 560
  • [37] TWISS PARAMETERS AND EVOLUTION OF QUANTUM HARMONIC-OSCILLATOR STATES
    DATTOLI, G
    GALLERANO, GP
    MARI, C
    TORRE, A
    RICHETTA, M
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (10): : 1151 - 1165
  • [38] ADELIC HARMONIC-OSCILLATOR
    DRAGOVICH, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (16): : 2349 - 2365
  • [39] THE PULSATING HARMONIC-OSCILLATOR
    ABDALLA, MS
    COLEGRAVE, RK
    KHOSRAVI, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 93 (02): : 195 - 216
  • [40] NONLINEAR HARMONIC-OSCILLATOR
    LAKSHMANAN, M
    [J]. JOURNAL OF SOUND AND VIBRATION, 1979, 64 (03) : 458 - 461