ON (K=3/4) COHERENT STATES FOR THE HARMONIC-OSCILLATOR

被引:0
|
作者
DEBERGH, N
机构
[1] Phys. Theor. et Math., Liege Univ.
来源
关键词
D O I
10.1088/0305-4470/23/2/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new construction of Perelomov's generalised coherent states (1986) is considered for one-dimensional harmonic oscillators admitting the Heisenberg-Weyl group as invariance Lie group. Exploiting the Niederer maximal kinematical invariance group (1973) for such physical systems, the author deduce further characteristics on the Heisenberg states through the use of the fundamental Perelomov state mod k, k) with k=3/4. The author explicitly gets new normalisation factor and measure for the Heisenberg generalised coherent states. The real Lie algebras so(2, 1) Square Operator h(2), so(2, 1) and h(2) play a prominent role in this study.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条