DECIMATION IN MORE THAN ONE-DIMENSION

被引:0
|
作者
KUSHNIR, V
ROSENSTEIN, B
机构
[1] Institute of Physics, Academia Sinica
关键词
D O I
10.1016/0370-2693(95)00876-M
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a formalism for performing real space renormalization group transformations of the ''decimation type'' using perturbation theory. The type of transformations beyond d = 1 is nontrivial even for free theories. We check the formalism on solvable case of O(N) symmetric Heisenberg chain. The transformation is particularly useful to study asymptotically free theories, Results for one class of such models, the d = 2 O(N) symmetric sigma models (N greater than or equal to 3) for decimation with scale factor eta = 2 (when quarter of the points is left) are given as an example.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [21] A 3 PARTICLE PROBLEM IN ONE-DIMENSION
    MARTINEZ, JC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1995, 63 (02) : 164 - 168
  • [22] QUANTUM INTEGRABLE SYSTEMS IN ONE-DIMENSION
    FOWLER, M
    [J]. PHYSICA D, 1995, 86 (1-2): : 189 - 197
  • [23] LOWER BOUNDS FOR POLARONS IN ONE-DIMENSION
    THOMCHICK, J
    [J]. PHYSICS LETTERS A, 1977, 62 (01) : 41 - 44
  • [24] SPACE PROTON TRANSPORT IN ONE-DIMENSION
    LAMKIN, SL
    KHANDELWAL, GS
    SHINN, JL
    WILSON, JW
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1994, 116 (04) : 291 - 299
  • [25] QUANTIZATION OF DISSIPATIVE SYSTEMS IN ONE-DIMENSION
    MIJATOVIC, M
    VELJANOSKI, B
    HAJDUKOVIC, D
    [J]. HADRONIC JOURNAL, 1984, 7 (05): : 1207 - 1223
  • [26] TOWARDS THE MOTT TRANSITION IN ONE-DIMENSION
    MORI, M
    FUKUYAMA, H
    IMADA, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (05) : 1639 - 1642
  • [27] PLASMONS IN 3, 2 AND ONE-DIMENSION
    SANTOYO, BM
    DELCASTILLOMUSSOT, M
    [J]. REVISTA MEXICANA DE FISICA, 1993, 39 (04) : 640 - 652
  • [28] STOCHASTIC DYNAMICS OF GRAVITY IN ONE-DIMENSION
    YAWN, KR
    MILLER, BN
    MAIER, W
    [J]. PHYSICAL REVIEW E, 1995, 52 (04): : 3390 - 3401
  • [29] CONDUCTANCE OF A PERFECT METAL IN ONE-DIMENSION
    STRALEY, JP
    KOLOMEISKY, EB
    [J]. PHYSICAL REVIEW B, 1993, 48 (03): : 1378 - 1383
  • [30] The noncommutative harmonic oscillator in more than one dimension
    Hatzinikitas, A
    Smyrnakis, I
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) : 113 - 125