COMPUTATION OF THE EIGENVALUES OF A CLASS OF NON-SELF-ADJOINT OPERATORS

被引:5
|
作者
LENHOFF, AM [1 ]
机构
[1] UNIV WISCONSIN,DEPT CHEM ENGN,MADISON,WI 53706
关键词
D O I
10.1137/0145020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:360 / 368
页数:9
相关论文
共 50 条
  • [1] BENCHMARK COMPUTATION OF EIGENVALUES WITH LARGE DEFECT FOR NON-SELF-ADJOINT ELLIPTIC DIFFERENTIAL OPERATORS
    Gasser, Rebekka
    Gedicke, Joscha
    Sauter, Stefan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : A3938 - A3953
  • [2] PROPERTIES OF A CLASS OF NON-SELF-ADJOINT OPERATORS
    MIKITYUK, YV
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1981, 15 (04) : 302 - 304
  • [3] Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators
    Cassano, B.
    Ibrogimov, O. O.
    Krejcirik, D.
    Stampach, F.
    [J]. ANNALES HENRI POINCARE, 2020, 21 (07): : 2193 - 2217
  • [4] Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators
    B. Cassano
    O. O. Ibrogimov
    D. Krejčiřík
    F. Štampach
    [J]. Annales Henri Poincaré, 2020, 21 : 2193 - 2217
  • [5] Spectral and Distribution of Eigenvalues of Non-self-adjoint Differential Operators
    Alizadeh, Reza
    Sameripour, Ali
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2023, 47 (05) : 611 - 623
  • [6] SPECTRAL PROJECTORS OF A CLASS OF NON-SELF-ADJOINT OPERATORS
    MURTAZIN, KK
    [J]. MATHEMATICAL NOTES, 1984, 35 (3-4) : 213 - 218
  • [7] On the Asymptotic Behavior of Eigenvalues and Eigenfunctions of Non-Self-Adjoint Elliptic Operators
    A. L. Pyatnitskii
    A. S. Shamaev
    [J]. Journal of Mathematical Sciences, 2004, 120 (3) : 1411 - 1423
  • [8] ON THE SIMPLICITY OF THE EIGENVALUES OF NON-SELF-ADJOINT MATHIEU-HILL OPERATORS
    Veliev, O. A.
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2014, 13 (01): : 122 - 134
  • [9] Asymptotics of Eigenvalues of Non-Self-Adjoint Schrodinger Operators on a Half-Line
    Shin, Kwang C.
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2010, 10 (01) : 111 - 133
  • [10] Localization of eigenvalues for non-self-adjoint Dirac and Klein-Gordon operators
    D'Ancona, P.
    Fanelli, L.
    Krejcirik, D.
    Schiavone, N. M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214