Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators

被引:12
|
作者
Cassano, B. [1 ]
Ibrogimov, O. O. [2 ]
Krejcirik, D. [3 ]
Stampach, F. [4 ]
机构
[1] Univ Bari, Dept Math, Via Edoardo Orabona 4, I-70125 Bari, Italy
[2] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[3] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[4] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 16000, Czech Republic
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 07期
关键词
SCHRODINGER-OPERATORS; BOUNDS; SPECTRUM;
D O I
10.1007/s00023-020-00916-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide quantitative estimates on the location of eigenvalues of one-dimensional discrete Dirac operators with complex l(p)-potentials for 1 <= p <= infinity. As a corollary, subsets of the essential spectrum free of embedded eigenvalues are determined for small l(1)-potential. Further possible improvements and sharpness of the obtained spectral bounds are also discussed.
引用
收藏
页码:2193 / 2217
页数:25
相关论文
共 50 条
  • [1] Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators
    B. Cassano
    O. O. Ibrogimov
    D. Krejčiřík
    F. Štampach
    [J]. Annales Henri Poincaré, 2020, 21 : 2193 - 2217
  • [2] Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators
    Luca Fanelli
    David Krejčiřík
    [J]. Letters in Mathematical Physics, 2019, 109 : 1473 - 1485
  • [3] Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators
    Fanelli, Luca
    Krejcirik, David
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1473 - 1485
  • [4] Localization of eigenvalues for non-self-adjoint Dirac and Klein-Gordon operators
    D'Ancona, P.
    Fanelli, L.
    Krejcirik, D.
    Schiavone, N. M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [5] Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications
    Cuenin, Jean-Claude
    Siegl, Petr
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (07) : 1757 - 1778
  • [6] Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications
    Jean-Claude Cuenin
    Petr Siegl
    [J]. Letters in Mathematical Physics, 2018, 108 : 1757 - 1778
  • [7] Non-self-adjoint periodic dirac operators
    Tkachenko, V
    [J]. OPERATOR THEORY, SYSTEM THEORY AND RELATED TOPICS: THE MOSHE LIVSIC ANNIVERSARY VOLUME, 2001, 123 : 485 - 512
  • [8] Pseudomodes for non-self-adjoint Dirac operators
    Krejcirik, David
    Duc, Tho Nguyen
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (12)
  • [9] ON THE ACCELERANTS OF NON-SELF-ADJOINT DIRAC OPERATORS
    Mykytyuk, Ya. V.
    Puyda, D. V.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2014, 20 (04): : 349 - 364
  • [10] COMPUTATION OF THE EIGENVALUES OF A CLASS OF NON-SELF-ADJOINT OPERATORS
    LENHOFF, AM
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (03) : 360 - 368