FRACTAL-DIMENSION CROSSOVERS IN TURBULENT PASSIVE SCALAR SIGNALS

被引:9
|
作者
GROSSMANN, S
LOHSE, D
机构
[1] Fachbereich Physik, Philipps-Universität, Marburg, D-35032
[2] The James Franck Institute, The University of Chicago, Chicago, IL, 60637
来源
EUROPHYSICS LETTERS | 1994年 / 27卷 / 05期
关键词
D O I
10.1209/0295-5075/27/5/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractal dimension delta(g)(1) of turbulent passive scalar signals is calculated from the fluid dynamical equation delta(g)(1) depends on the scale. For small Prandtl (or Schmidt) number Pr < 10(-2) one gets two ranges, delta(g)(1)= 1 for small-scale r and delta(g)(1)= 5/3 for large r, both as expected. But for large Pr > 1 one gets a third, intermediate range in which the signal is extremely wrinkled and has delta(g)(1) = 2. In that range the passive scalar structure function D(theta)(r) has a plateau. We calculate the Pr-dependence of the crossovers. The plateau regime can be observed in a numerical solution of the fluid dynamical equation, employing a reduced wave vector set approximation introduced by us recently.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [1] Fractal-dimension particles for drug delivery.
    Edwards, DA
    Wright, J
    Lipp, M
    Batycky, R
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U514 - U514
  • [2] A quasi-likelihood method for fractal-dimension estimation
    Wang, YG
    Lin, YX
    Haywood, MDE
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 48 (4-6) : 429 - 436
  • [3] Fractal-dimension limit of fracture surface in structural steels
    Strnadel, B
    Byczanski, P
    [J]. KOVOVE MATERIALY-METALLIC MATERIALS, 2001, 39 (02): : 93 - 109
  • [4] THE CERTAIN-MODEL LEADING TO A FRACTAL-DIMENSION IN THE SCHROEDINGER PROBLEM
    BONCH-BRUEVICH, VL
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1986, 27 (04): : 13 - 16
  • [5] TOPOLOGICAL AND FRACTAL PROPERTIES OF TURBULENT PASSIVE SCALAR FLUCTUATIONS AT SMALL SCALES
    BERSHADSKII, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (3-4) : 909 - 914
  • [6] Automatic detection of seismic phases using variance fractal-dimension trajectory
    Jiao L.
    Moon W.M.
    [J]. Geosciences Journal, 1998, 2 (1) : 37 - 45
  • [7] QUANTITATIVE CLASSIFICATION OF CLOUD MICROPHYSICAL IMAGERY VIA FRACTAL-DIMENSION CALCULATIONS
    Lumb, L. Ian
    Low, Tom B.
    Di Leo, Arthur
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1994, 2 (03) : 399 - 404
  • [8] TURBULENT MIXING OF A PASSIVE SCALAR
    HOLZER, M
    SIGGIA, ED
    [J]. PHYSICS OF FLUIDS, 1994, 6 (05) : 1820 - 1837
  • [9] Turbulent mixing of a passive scalar
    Pumir, A
    Shraiman, BI
    Siggia, ED
    [J]. PHYSICA A, 1999, 263 (1-4): : 95 - 103
  • [10] FRACTAL-DIMENSION AS CHARACTERISTIC-VALUE FOR CATALYSTS .1. MATHEMATICAL INTRODUCTION
    ACKERMANN, WG
    SPINDLER, H
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1988, 269 (05): : 1000 - 1010