Fractal-dimension limit of fracture surface in structural steels

被引:0
|
作者
Strnadel, B
Byczanski, P
机构
[1] Tech Univ Ostrava, Katedra Mat Oveho Inzenyrstvi, Fak Met & Mat Oveho Inzenyrstvi, Ostrava 70833, Czech Republic
[2] Acad Sci Czech Republic, Ustav Geoniky, Ostrava 70800, Czech Republic
来源
KOVOVE MATERIALY-METALLIC MATERIALS | 2001年 / 39卷 / 02期
关键词
martensitic steel; carbides; voids; ductile fracture; fractography; fractal dimension; fracture toughness;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a method for predicting the fractal dimensions of ductile fracture surfaces in structural steels. The fractal dimension of the fracture surface is a non-monotonic function of the ratio of interparticle spacing and particle size, and it increases with the increasing: work hardening exponent and the ordering parameter of second-phase particles in the matrix. The ratio of interparticle spacing and particle size, at which the fractal dimension has a maximum, diminishes with increasing work hardening exponent. The model has been proved for Ni-Cr steel with the structure of tempered martensite. In the region of stable crack propagation, a very good accordance of the experimentally ascertained fractal dimension of the fracture profile with the predicted fractal dimension of fracture surface was found.
引用
收藏
页码:93 / 109
页数:17
相关论文
共 50 条
  • [1] Fractal-dimension particles for drug delivery.
    Edwards, DA
    Wright, J
    Lipp, M
    Batycky, R
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U514 - U514
  • [2] Fractal dimension of metallic fracture surface
    Piotr Kotowski
    [J]. International Journal of Fracture, 2006, 141 : 269 - 286
  • [3] Fractal dimension of metallic fracture surface
    Kotowski, Piotr
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2006, 141 (1-2) : 269 - 286
  • [4] A quasi-likelihood method for fractal-dimension estimation
    Wang, YG
    Lin, YX
    Haywood, MDE
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1999, 48 (4-6) : 429 - 436
  • [5] FRACTAL-DIMENSION CROSSOVERS IN TURBULENT PASSIVE SCALAR SIGNALS
    GROSSMANN, S
    LOHSE, D
    [J]. EUROPHYSICS LETTERS, 1994, 27 (05): : 347 - 352
  • [6] THE CERTAIN-MODEL LEADING TO A FRACTAL-DIMENSION IN THE SCHROEDINGER PROBLEM
    BONCH-BRUEVICH, VL
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1986, 27 (04): : 13 - 16
  • [7] FRACTAL ANALYSIS OF FRACTURE SURFACES IN STRUCTURAL-STEELS
    EMELYANOV, AA
    PORTNOV, LE
    PYSHMINTSEV, IY
    POSPELOV, YV
    [J]. STEEL IN TRANSLATION, 1994, 24 (06) : 30 - 34
  • [8] Automatic detection of seismic phases using variance fractal-dimension trajectory
    Jiao L.
    Moon W.M.
    [J]. Geosciences Journal, 1998, 2 (1) : 37 - 45
  • [9] The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels
    Dlouhy, I.
    Strnadel, B.
    [J]. ENGINEERING FRACTURE MECHANICS, 2008, 75 (3-4) : 726 - 738
  • [10] ON FRACTAL DIMENSION OF A FRACTURE SURFACE BY VOLUME COVERING METHOD
    Zhou, H. W.
    Xue, D. J.
    Jiang, D. Y.
    [J]. SURFACE REVIEW AND LETTERS, 2014, 21 (01)