REALIZATION OF NONCAUSAL 2-D SYSTEMS BASED ON A DESCRIPTOR MODEL

被引:6
|
作者
UETAKE, Y
机构
[1] Tokyo University of Mercantile Marine
关键词
D O I
10.1109/9.173163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown that a class of linear discrete noncausal two-dimensional (2-D) systems can be represented by discrete descriptor systems whose coefficients are functions that admit Laurent series expansions on the unit circle in the complex plane. Then, some properties of the proposed model are derived.
引用
收藏
页码:1837 / 1840
页数:4
相关论文
共 50 条
  • [41] System realization using 2-D output measurements
    Piou, JE
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 2840 - 2845
  • [42] CASCADE REALIZATION OF 2-D SEPARABLE IN DENOMINATOR FILTERS
    LASHGARI, B
    SILVERMAN, LM
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1983, 2 (02) : 193 - 201
  • [43] A new constructive procedure for 2-D coprime realization in Fornasini-Marchesini model
    Xu, Li
    Wu, Qinghe
    Lin, Zhiping
    Xiao, Yegui
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (09) : 2061 - 2069
  • [44] ERROR ANALYSIS OF A SYSTOLIC REALIZATION OF 2-D FILTERS
    RAGHURAMIREDDY, D
    UNBEHAUEN, R
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (02) : 478 - 482
  • [45] A NEW REALIZATION FOR 2-D DIGITAL-FILTERS
    LAMPROPOULOS, GA
    FAHMY, MM
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (04): : 533 - 542
  • [46] Realization of 2-D DCT Using Adder Compressor
    Lahoti, Raunak R.
    Agarwal, Shantanu
    Balamurugan, S.
    Marimuthu, R.
    [J]. SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 2, 2020, 1057 : 575 - 580
  • [47] A SYSTOLIC REALIZATION FOR 2-D DIGITAL-FILTERS
    SIDAHMED, MA
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (04): : 560 - 565
  • [48] A Method for Computing the 2-D Stability Margin Based on a New Stability Test for 2-D Systems
    Nikos E. Mastorakis
    [J]. Multidimensional Systems and Signal Processing, 1999, 10 : 93 - 99
  • [49] A method for computing the 2-D stability margin based on a new stability test for 2-D systems
    Mastorakis, NE
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1999, 10 (01) : 93 - 99
  • [50] SYMMETRICAL NONCAUSAL SPATIAL MODELS FOR 2-D SIGNALS WITH APPLICATIONS IN STOCHASTIC TEXTURE MODELING
    KOK, AL
    MANOLAKIS, DG
    INGLE, VK
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1993, 4 (02) : 125 - 149