Semi-parametric approximation of Kendall's distribution function and multivariate Return Periods

被引:0
|
作者
Salvadori, Gianfausto [1 ]
Durante, Fabrizio [2 ]
Perrone, Elisa [3 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis, I-73100 Lecce, Italy
[2] Free Univ Bozen Bolzano, Sch Econ & Management, I-39100 Bolzano, Italy
[3] Johannes Kepler Univ Linz, Inst Angew Statist, A-4040 Linz, Austria
来源
JOURNAL OF THE SFDS | 2013年 / 154卷 / 01期
关键词
Kendall's distribution function; multivariate return periods; copulas; risk assessment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we outline a constructive approach for the approximation of Kendall's distribution function and Kendall's Return Period in the bivariate case. First, we introduce a suitable theoretical framework, based on the Theory of Copulas, where to embed the issue. Then, we outline an original construction procedure to approximate the empirical Kendall distribution function estimated using the available data. The whole approach is semi-parametric: the empirical Kendall distribution function is approximated via a (suitable) continuous piece-wise linear function on the unit interval. A sensitivity analysis is carried out via a simulation procedure, in order to investigate the robustness of the approach proposed against several relevant factors.
引用
收藏
页码:151 / 173
页数:23
相关论文
共 50 条