We give an elementary proof, using nonstandard analysis, of the Jordan curve theorem. We also give a nonstandard generalization of the theorem. The proof is purely geometrical in character, without any use of topological concepts and is based on a discrete finite form of the Jordan theorem, whose proof is purely combinatorial. Some familiarity with nonstandard analysis is assumed. The rest of the paper is self-contained except for the proof a discrete standard form of the Jordan theorem. The proof is based on hyperfinite approximations to regions on the plane.