Estimation of a Matrix of Heterogeneity Parameters in Multivariate Meta-Analysis of Random-Effects Models

被引:0
|
作者
Wouhib, Abera [1 ]
机构
[1] Ctr Dis Control & Prevent, Natl Ctr Hlth Stat, 3311 Toledo Rd, Hyattsville, MD 20782 USA
来源
关键词
DerSimonian and Laird; Heterogeneity Parameter; Hybrid Method; Random Effects; Sidik and Jonkman;
D O I
10.2991/jsta.2014.13.1.5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate meta-analysis has potential over its univariate counterpart. The most common challenge in univariate or multivariate meta-analysis is estimating heterogeneity parameters in non-negative domains under the random-effects model assumption. In this context, two new multivariate estimation methods are demonstrated; first, by extending the Sidik and Jonkman (2005) univariate estimates to a multivariate setting, and second, by considering an iterative version of the Sidik and Jonkman method, namely, a Hybrid method developed in Wouhib (2013). These two methods are compared with extended DerSimonian and Laird methods (Jackson et al. 2009; Chen et al. 2012) by using an example and simulation in random-effects multivariate meta-analysis. Finally, the benefits of the proposed estimates are evaluated in terms of precision in estimating vectors of effect sizes and associated covariance matrices via simulation. Also, some limitations and remedies resulting from negative definite matrix in estimating heterogeneity parameters will be discussed.
引用
收藏
页码:46 / 64
页数:19
相关论文
共 50 条
  • [41] Random-effects meta-analysis: the number of studies matters
    Guolo, Annamaria
    Varin, Cristiano
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) : 1500 - 1518
  • [42] Random-Effects Meta-analysis of Inconsistent Effects: A Time for Change
    Cornell, John E.
    Mulrow, Cynthia D.
    Localio, Russell
    Stack, Catharine B.
    Meibohm, Anne R.
    Guallar, Eliseo
    Goodman, Steven N.
    [J]. ANNALS OF INTERNAL MEDICINE, 2014, 160 (04) : 267 - 270
  • [43] Evaluation of Heterogeneity and Heterogeneity Interval Estimators in Random-Effects Meta-Analysis of the Standardized Mean Difference in Education and Psychology
    Boedeker, Peter
    Henson, Robin K.
    [J]. PSYCHOLOGICAL METHODS, 2020, 25 (03) : 346 - 364
  • [44] Summarizing empirical information on between-study heterogeneity for Bayesian random-effects meta-analysis
    Roever, Christian
    Sturtz, Sibylle
    Lilienthal, Jona
    Bender, Ralf
    Friede, Tim
    [J]. STATISTICS IN MEDICINE, 2023, 42 (14) : 2439 - 2454
  • [45] Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model
    Robbie C. M. van Aert
    Joris Mulder
    [J]. Psychonomic Bulletin & Review, 2022, 29 : 55 - 69
  • [46] Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model
    van Aert, Robbie C. M.
    Mulder, Joris
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2022, 29 (01) : 55 - 69
  • [47] A demonstration and evaluation of the use of cross-classified random-effects models for meta-analysis
    Belén Fernández-Castilla
    Marlies Maes
    Lies Declercq
    Laleh Jamshidi
    S. Natasha Beretvas
    Patrick Onghena
    Wim Van den Noortgate
    [J]. Behavior Research Methods, 2019, 51 : 1286 - 1304
  • [48] A brief note on the random-effects meta-analysis model and its relationship to other models
    McKenzie, Joanne E.
    Veroniki, Areti Angeliki
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2024, 174
  • [49] A demonstration and evaluation of the use of cross-classified random-effects models for meta-analysis
    Fernandez-Castilla, Belen
    Maes, Marlies
    Declercq, Lies
    Jamshidi, Laleh
    Beretvas, S. Natasha
    Onghena, Patrick
    Van den Noortgate, Wim
    [J]. BEHAVIOR RESEARCH METHODS, 2019, 51 (03) : 1286 - 1304
  • [50] Fixed-effect Versus Random-effects Models for Meta-analyses: Random-effects Models
    Halme, Alex L. E.
    McAlpine, Kristen
    Martini, Alberto
    [J]. EUROPEAN UROLOGY FOCUS, 2023, 9 (05): : 693 - 694