COMPOSITES OF TRANSLATIONS AND ODD RATIONAL POWERS ACT FREELY

被引:2
|
作者
COHEN, SD
GLASS, AMW
机构
[1] UNIV GLASGOW,DEPT MATH,GLASGOW G12 8QW,LANARK,SCOTLAND
[2] BOWLING GREEN STATE UNIV,DEPT MATH & STAT,BOWLING GREEN,OH 43403
关键词
D O I
10.1017/S0004972700013903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that no non-trivial composition of translations x --> x + a and odd rational powers x -->(p/q), where p,q are odd co-prime integers, positive or negative with p/q not equal +/-, acts like the identity on a held of characteristic zero. This extends a theorem of Adeleke, Glass, and Morley in which only odd positive rational powers were considered. Moreover, the nature of the proof itself (by field theory) is a simplification and natural refinement of previous proofs. It has applications in other settings.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [41] Adaptive Neural Fault-Tolerant Control for Nonlinear Fractional-Order Systems with Positive Odd Rational Powers
    Ma, Jiawei
    Wang, Huanqing
    Su, Yakun
    Liu, Cungen
    Chen, Ming
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [42] Robust adaptive control for uncertain nonlinear systems with odd rational powers, unmodeled dynamics, and non-triangular structure?
    Liu, Zhen-Guo
    Sun, Wei
    Zhang, Weidong
    ISA TRANSACTIONS, 2022, 128 : 81 - 89
  • [43] POWERS OF APPOINTMENT ACT OF 1951
    Craven, George
    HARVARD LAW REVIEW, 1951, 65 (01) : 55 - 83
  • [44] Formulas for Odd Zeta Values and Powers of pi
    Chamberland, Marc
    Lopatto, Patrick
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (02)
  • [45] On the alternating sums of powers of consecutive odd integers
    Ryoo, C. S.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (06) : 1019 - 1024
  • [46] Powers of integers as sums of consecutive odd numbers
    Junaidu, S. B.
    Laradji, A.
    Umar, A.
    MATHEMATICAL GAZETTE, 2010, 94 (529): : 117 - 119
  • [47] EXISTENCE OF MEASURES WITH SINGULAR POWERS HAVING ALL THEIR TRANSLATIONS
    FOURT, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (08): : 648 - &
  • [48] RATIONAL POWERS OF GENERATORS OF MOBIUS GROUPS
    PARKER, JR
    MICHIGAN MATHEMATICAL JOURNAL, 1992, 39 (02) : 309 - 323
  • [49] Integer parts of powers of rational numbers
    Dubickas, A
    Novikas, A
    MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (03) : 635 - 648
  • [50] Integer parts of powers of rational numbers
    Artūras Dubickas
    Aivaras Novikas
    Mathematische Zeitschrift, 2005, 251 : 635 - 648