ON INFORMATION, NEGENTROPY AND H-THEOREM

被引:5
|
作者
CHAKRABARTI, CG [1 ]
SARKER, NG [1 ]
机构
[1] UNIV CALCUTTA, SN BOSE INST PHYS SCI, CALCUTTA 700009, W BENGAL, INDIA
来源
关键词
D O I
10.1007/BF01307682
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:265 / 269
页数:5
相关论文
共 50 条
  • [31] THE GENERALIZED H-THEOREM IN THE HILBERT THEORY
    DELALE, CF
    JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (02): : 971 - 975
  • [32] THE H-THEOREM FOR BOLTZMANN TYPE EQUATIONS
    VOIGT, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1981, 326 : 198 - 213
  • [33] A CONVERSE H-THEOREM FOR INDUCTIVE PROCESSES
    ANDONIE, R
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1990, 9 (02): : 159 - 167
  • [34] Proof of the ergodic theorem and the H-theorem in quantum mechanics
    von Neumann, J.
    EUROPEAN PHYSICAL JOURNAL H, 2010, 35 (02): : 201 - 237
  • [35] Kaniadakis statistics and the quantum H-theorem
    Santos, A. P.
    Silva, R.
    Alcaniz, J. S.
    Anselmo, D. H. A. L.
    PHYSICS LETTERS A, 2011, 375 (03) : 352 - 355
  • [36] General H-Theorem for Hard Spheres
    Adam Bednorz
    Bogdan Cichocki
    Journal of Statistical Physics, 2004, 114 : 327 - 360
  • [37] GIBBS TOTAL ENTROPY AND H-THEOREM
    DEGOTTAL, P
    PHYSICS LETTERS A, 1972, A 39 (01) : 71 - &
  • [38] About the H-theorem in quantum mechanics.
    Pauli, W.
    Fierz, M.
    ZEITSCHRIFT FUR PHYSIK, 1937, 106 (05): : 572 - 587
  • [39] H-THEOREM FOR A LINEAR KINETIC-THEORY
    BLAWZDZIEWICZ, J
    CICHOCKI, B
    VANBEIJEREN, H
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) : 607 - 633
  • [40] Proof of the Ergodic theorem and the H-Theorem in the new Mechanics.
    v. Neumann, J.
    ZEITSCHRIFT FUR PHYSIK, 1929, 57 (1-2): : 30 - 70