BRST MODEL FOR EQUIVARIANT COHOMOLOGY AND REPRESENTATIVES FOR THE EQUIVARIANT THOM CLASS

被引:68
|
作者
KALKMAN, J
机构
[1] Mathematical Institute, University of Utrecht, Utrecht, NL-3508 TA
关键词
D O I
10.1007/BF02096949
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper the BRST formalism for topological field theories is studied in a mathematical setting. The BRST operator is obtained as a member of a one parameter family of operators connecting the Weil model and the Cartan model for equivariant cohomology. Furthermore, the BRST operator is identified as the sum of an equivariant derivation and its Fourier transform. Using this, the Mathai-Quillen representative for the Thom class of associated vector bundles is obtained as the Fourier transform of a simple BRST closed element.
引用
收藏
页码:447 / 463
页数:17
相关论文
共 50 条
  • [41] LOCALIZATION OF EQUIVARIANT COHOMOLOGY RINGS
    DUFLOT, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) : 91 - 105
  • [42] TORSION AND ABELIANIZATION IN EQUIVARIANT COHOMOLOGY
    Holm, Tara S.
    Sjamaar, Reyer
    TRANSFORMATION GROUPS, 2008, 13 (3-4) : 585 - 615
  • [43] ARC SPACES AND EQUIVARIANT COHOMOLOGY
    Anderson, Dave
    Stapledon, Alan
    TRANSFORMATION GROUPS, 2013, 18 (04) : 931 - 969
  • [44] Equivariant cohomology of torus orbifolds
    Darby, Alastair
    Kuroki, Shintaro
    Song, Jongbaek
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (02): : 299 - 328
  • [45] EQUIVARIANT SINGULAR HOMOLOGY AND COHOMOLOGY
    ILLMAN, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (01) : 188 - 192
  • [46] EQUIVARIANT COHOMOLOGY AND DESCENT, II
    DUFLO, M
    VERGNE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (11): : 1143 - 1148
  • [47] Puzzles and (equivariant) cohomology of Grassmannians
    Knutson, A
    Tao, T
    DUKE MATHEMATICAL JOURNAL, 2003, 119 (02) : 221 - 260
  • [48] On the localization formula in equivariant cohomology
    Pedroza, Andres
    Tu, Loring W.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (07) : 1493 - 1501
  • [49] Generalized Equivariant Cohomology and Stratifications
    Crooks, Peter
    Holden, Tyler
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 483 - 496
  • [50] Equivariant cohomology and holomorphic invariant
    Hou, Zuoliang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) : 433 - 447