QD ALGORITHMS AND ALGEBRAIC EIGENVALUE PROBLEMS

被引:0
|
作者
KERSHAW, D
机构
关键词
D O I
10.1016/0024-3795(83)90205-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:53 / 75
页数:23
相关论文
共 50 条
  • [31] Several properties of invariant pairs of nonlinear algebraic eigenvalue problems
    Szyld, Daniel B.
    Xue, Fei
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 921 - 954
  • [32] Algebraic Algorithms for Linear Matroid Parity Problems
    Cheung, Ho Yee
    Lau, Lap Chi
    Leung, Kai Man
    ACM TRANSACTIONS ON ALGORITHMS, 2014, 10 (03)
  • [33] Algebraic Algorithms for Linear Matroid Parity Problems
    Cheung, Ho Yee
    Lau, Lap Chi
    Leung, Kai Man
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1366 - 1382
  • [34] Algebraic structures and algorithms for matching and matroid problems
    Harvey, Nicholas J. A.
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 531 - 540
  • [35] Faster algebraic algorithms for path and packing problems
    Koutis, Ioannis
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 575 - 586
  • [36] Iterative algorithms for nonlinear ordinary differential eigenvalue problems
    Sun, W
    Liu, KM
    APPLIED NUMERICAL MATHEMATICS, 2001, 38 (03) : 361 - 376
  • [37] The effects of inexact solvers in algorithms for symmetric eigenvalue problems
    Smit, P
    Paardekooper, MHC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) : 337 - 357
  • [38] ARNOLDI TYPE ALGORITHMS FOR LARGE UNSYMMETRICMULTIPLE EIGENVALUE PROBLEMS
    Zhong-xiao Jia(Department of Applied Mathematics
    JournalofComputationalMathematics, 1999, (03) : 257 - 274
  • [39] Greedy Algorithms for High-Dimensional Eigenvalue Problems
    Eric Cancès
    Virginie Ehrlacher
    Tony Lelièvre
    Constructive Approximation, 2014, 40 : 387 - 423
  • [40] Local and parallel finite element algorithms for eigenvalue problems
    Xu J.
    Zhou A.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (2) : 185 - 200