NON-INVASIVE APPROACH TO PREDICT THE CHOLESTEROL LEVEL IN BLOOD USING BIOIMPEDANCE AND NEURAL NETWORK TECHNIQUES

被引:1
|
作者
Mohktar, M. S. [1 ]
Ibrahim, F. [1 ]
Ismail, N. A. [2 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Med Informat & Biol Microelectromech Syst Special, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Econ & Adm, Dept Appl Stat, Kuala Lumpur 50603, Malaysia
关键词
Non-invasive; total cholesterol; bioelectrical impedance; artificial neural network; logistic regression;
D O I
10.4015/S1016237213500464
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a new non- invasive approach to predict the status of high total cholesterol (TC) level in blood using bioimpedance and the artificial neural network (ANN) techniques. The input parameters for the ANN model are acquired from a non-invasive bioelectrical impedance analysis (BIA) measurement technique. The measurement data were obtained from 260 volunteered participants. A total of 190 subject's data were used for the ANN training purpose and the remaining 70 subject's data were used for model testing. Six parameters from the BIA parameters were found to be significant predictors for TC level in blood using logistic regression analysis. The six input predictors for the ANN modeling are age, body mass index (BMI), body capacitance, basal metabolic rate, extracellular mass and lean body mass. Four ANN techniques such as the gradient descent with momentum, the resilient, the scaled conjugate gradient and the Levenberg-Marquardt were used and compared for predicting the high TC level in the blood. The finding showed that the resilient method was the best model with prediction accuracy, sensitivity,
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Characterization of BAT activity in rats using invasive and non-invasive techniques
    Paulus, Andreas
    van Ewijk, Petronella A.
    Nascimento, Emmani B. M.
    De Saint-Hubert, Marijke
    Hendrikx, Geert
    Vogg, Andrea
    Pooters, Ivo
    Schnijderberg, Melanie
    Vanderlocht, Joris
    Bos, Gerard
    Brans, Boudewijn
    Schrauwen-Hinderling, Vera B.
    Mottaghy, Felix M.
    Bauwens, Matthias
    PLOS ONE, 2019, 14 (05):
  • [42] Non-invasive measurement of blood sugar level by millimeter waves
    Nikawa, Y
    Someya, D
    2001 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2001, : 171 - 174
  • [43] A SKULL FROM NORTHERN PATAGONIA WITH POSTMORTEM MODIFICATIONS: AN APPROACH USING NON-INVASIVE TECHNIQUES
    Del Papa, Mariano
    Gordon, Florencia
    Castro, Juan C.
    Fuchs, Laura
    Menendez, Lumila
    Di Bastiano, Andres
    Pucciarelli, Hector M.
    INTERSECCIONES EN ANTROPOLOGIA, 2011, 12 (02): : 349 - 354
  • [44] Neural network-based approach for the non-invasive diagnosis and classification of hepatotropic viral disease
    Ansari, S.
    Shafi, I.
    Ahmad, J.
    Shah, S. Ismail
    IET COMMUNICATIONS, 2012, 6 (18) : 3265 - 3273
  • [45] Non-invasive blood pressure measurement in animals: Part 1-Techniques for measurement and validation of non-invasive devices
    Skelding, Alicia
    Valverde, Alexander
    CANADIAN VETERINARY JOURNAL-REVUE VETERINAIRE CANADIENNE, 2020, 61 (04): : 368 - 374
  • [46] Alternative index for lactate threshold –preliminary study using a non-invasive bioimpedance cardiography
    Okimoto, Kohei
    Miyazaki, Masaki
    Nogawa, Masamichi
    Yamakoshi, Ken-Ichi
    Tanaka, Shinobu
    Transactions of Japanese Society for Medical and Biological Engineering, 2014, 52
  • [47] Non-invasive glucose monitor based on electric bioimpedance using AFE4300
    Raul Sulla, T.
    Jesus Talavera, S.
    Elvis Supo, C.
    Andres Montoya, A.
    PROCEEDINGS OF THE 2019 IEEE XXVI INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2019,
  • [48] A non-invasive technique to predict the mutagenicity and teratogenicity using onion
    Ravichand, D. M.
    Phansalkar, A. A.
    Sheshayamma, V.
    Satischandran, P.
    Singh, S. S.
    CHEMICO-BIOLOGICAL INTERACTIONS, 2006, 161 (03) : 220 - 221
  • [49] Non-invasive regional cerebral blood flow quantification in the 123I-IMP autoradiography using artificial neural network
    Kaga, Tetsuro
    Kato, Hiroki
    Imai, Toyohiro
    Ando, Tomohiro
    Noda, Yoshifumi
    Miura, Takayuki
    Enomoto, Yukiko
    Hyodo, Fuminori
    Iwama, Toru
    Matsuo, Masayuki
    PLOS ONE, 2023, 18 (03):
  • [50] Estimating Continuous Blood Pressure from Photoplethysmogram Signals for Non-invasive Devices by Convolutional Neural Network
    Dong, Bui An
    Hoang, Phan Minh
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 671 - 675