ON WEAK AND STRONG-CONVERGENCE TO EQUILIBRIUM FOR SOLUTIONS TO THE LINEAR BOLTZMANN-EQUATION

被引:20
|
作者
PETTERSSON, R
机构
[1] Department of Mathematics, Chalmers University of Technology, Göteborg
关键词
LINEAR BOLTZMANN EQUATION; TRANSPORT EQUATION; INITIAL BOUNDARY VALUE PROBLEM; EXTERNAL FORCE; BOUNDARY CONDITIONS; ENTROPY FUNCTION; H-FUNCTIONAL; DETAILED BALANCE; COLLISION INVARIANTS; CONVERGENCE TO EQUILIBRIUM; INFINITE-RANGE COLLISIONS;
D O I
10.1007/BF01048054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers the linear space-inhomogeneous Boltzmann equation for a distribution function in a bounded domain with general boundary conditions together with an external potential force. The paper gives results on strong convergence to equilibrium, when t --> infinity, for general initial data; first in the cutoff case, and then for infinite-range collision forces. The proofs are based on the properties of translation continuity and weak convergence to equilibrium. To handle these problems general H-theorems (concerning monotonicity in time of convex entropy functionals) are presented. Furthermore, the paper gives general results on collision invariants, i.e., on functions satisfying detailed balance relations in a binary collision.
引用
收藏
页码:355 / 380
页数:26
相关论文
共 50 条
  • [41] GLOBAL-SOLUTIONS OF BOLTZMANN-EQUATION
    DIPERNA, R
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (07): : 343 - 346
  • [42] GLOBAL SOLUTIONS OF THE BOLTZMANN-EQUATION ON A LATTICE
    CERCIGNANI, C
    GREENBERG, W
    ZWEIFEL, PF
    JOURNAL OF STATISTICAL PHYSICS, 1979, 20 (04) : 449 - 462
  • [43] SOME CLASSES OF EXACT SOLUTIONS OF NON-LINEAR BOLTZMANN-EQUATION
    TENTI, G
    HUI, WH
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) : 774 - 779
  • [44] SHOCK PROFILE SOLUTIONS OF THE BOLTZMANN-EQUATION
    CAFLISCH, RE
    NICOLAENKO, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (02) : 161 - 194
  • [45] MULTIGROUP SOLUTIONS OF THE NONLINEAR BOLTZMANN-EQUATION
    KUGERL, G
    SCHURRER, F
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (12): : 2204 - 2210
  • [46] UNIQUENESS OF SOLUTIONS TO LINEARIZED BOLTZMANN-EQUATION
    GARBANATI, LF
    GREENBERG, W
    ZWEIFEL, PF
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (01) : 249 - 252
  • [47] DIFFERENTIAL PROPERTIES OF SOLUTIONS OF BOLTZMANN-EQUATION
    FIRSOV, AN
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1975, (03): : 99 - 105
  • [48] On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials
    Canizo, Jose A.
    Einav, Amit
    Lods, Bertrand
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 801 - 839
  • [49] STATIONARY BOLTZMANN-EQUATION NEAR-EQUILIBRIUM
    BUSONI, G
    PALCZEWSKI, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1993, 3 (05): : 595 - 639
  • [50] APPROACH TO EQUILIBRIUM OF A BOLTZMANN-EQUATION SOLUTION - COMMENT
    LIEB, EH
    PHYSICAL REVIEW LETTERS, 1982, 48 (15) : 1057 - 1057