A mixture of common skew-t factor analysers

被引:32
|
作者
Murray, Paula M. [1 ]
McNicholas, Paul D. [1 ]
Browne, Ryan P. [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
来源
STAT | 2014年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
clustering; common factors; high-dimensional data; model-based clustering; non-Gaussian mixtures; skew-t distribution;
D O I
10.1002/sta4.43
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A mixture of common skew-t factor analysers model is introduced for model-based clustering of high-dimensional data. By assuming common factors, this model allows clustering to be performed in the presence of a large number of mixture components or when the number of dimensions is too large to be well modelled by the mixture of factor analysers model or a variant thereof. Furthermore, assuming that the component densities follow a skew-t distribution allows robust clustering of data with asymmetric clusters. This paper is the first time that skewed common factors have been used, and it marks an important step in robust clustering and classification of high-dimensional data. The alternating expectation-conditional maximization algorithm is employed for parameter estimation. We demonstrate excellent clustering performance when our mixture of common skew-t factor analysers model is applied to real and simulated data. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:68 / 82
页数:15
相关论文
共 50 条
  • [1] Mixtures of restricted skew-t factor analyzers with common factor loadings
    Wan-Lun Wang
    Luis M. Castro
    Yen-Ting Chang
    Tsung-I Lin
    [J]. Advances in Data Analysis and Classification, 2019, 13 : 445 - 480
  • [2] Mixtures of restricted skew-t factor analyzers with common factor loadings
    Wang, Wan-Lun
    Castro, Luis M.
    Chang, Yen-Ting
    Lin, Tsung-I
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (02) : 445 - 480
  • [3] Mixtures of skew-t factor analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 326 - 335
  • [4] On the identifiability of finite mixture of Skew-Normal and Skew-t distributions
    Otiniano, C. E. G.
    Rathie, P. N.
    Ozelim, L. C. S. M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 106 : 103 - 108
  • [5] Analysis of Antibody Data Using Skew-Normal and Skew-t Mixture Models
    Domingues, Tiago Dias
    Mourino, Helena
    Sepulveda, Nuno
    [J]. REVSTAT-STATISTICAL JOURNAL, 2024, 22 (01) : 111 - 132
  • [6] Analytic calculations for the EM algorithm for multivariate skew-t mixture models
    Vrbik, I.
    McNicholas, P. D.
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (06) : 1169 - 1174
  • [7] Use of Skew-Normal and Skew-t Distributions for Mixture Modeling of Freeway Speed Data
    Zou, Yajie
    Zhang, Yunlong
    [J]. TRANSPORTATION RESEARCH RECORD, 2011, (2260) : 67 - 75
  • [8] Finite mixture of regression models for censored data based on the skew-t distribution
    Park, Jiwon
    Dey, Dipak K.
    Lachos, Victor H.
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [9] Extremal properties of the skew-t distribution
    Peng, Zuoxiang
    Li, Chunqiao
    Nadarajah, Saralees
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 112 : 10 - 19
  • [10] Robust skew-t factor analysis models for handling missing data
    Wan-Lun Wang
    Min Liu
    Tsung-I Lin
    [J]. Statistical Methods & Applications, 2017, 26 : 649 - 672