Heteroscedastic mixture transition distribution (HMTD) model

被引:0
|
作者
Wang, Hongjun [1 ,2 ]
Tian, Zheng [2 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
关键词
Heteroscedastic mixture transition distribution model; Stationarity; Bayes information criterion; ECM algorithm; Asymmetric distribution; Multimodal distribution; Conditional heteroscedasticity;
D O I
10.1007/s12190-008-0095-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper further studies the heteroscedastic mixture transition distribution (HMTD) model introduced by Berchtold. Both the expectation and the standard deviation of each component are written as functions of the past of the process. The stationarity conditions are derived. An expectation conditional maximization (ECM) algorithm is used and shown to work well for estimation, the model selection problem is addressed, and the formulaes for computing the observed information matrix are derived. The shape changing feature of conditional distributions makes the model capable of modelling time series with asymmetric or multimodal distribution. The model is applied to several simulated and real datasets with satisfactory results.
引用
收藏
页码:207 / 224
页数:18
相关论文
共 50 条
  • [31] On a multivariate conditional heteroscedastic model
    Wong, H
    Li, WK
    [J]. BIOMETRIKA, 1997, 84 (01) : 111 - 123
  • [32] ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL
    RUTEMILLER, HC
    BOWERS, DA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (322) : 552 - 557
  • [33] Linear models for the impact of order flow on prices. II. The Mixture Transition Distribution model
    Taranto, Damian Eduardo
    Bormetti, Giacomo
    Bouchaud, Jean-Philippe
    Lillo, Fabrizio
    Toth, Bence
    [J]. QUANTITATIVE FINANCE, 2018, 18 (06) : 917 - 931
  • [34] Heteroscedastic Weibull-Normal Mixture Models: A Bayesian Approach
    Garrido, Liliana
    Cuervo, Edilberto C.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (02) : 249 - 265
  • [35] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Guney, Yesim
    Tuac, Yetkin
    Ozdemir, Senay
    Arslan, Olcay
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (02) : 805 - 827
  • [36] A-Optimal designs for mixture polynomial models with heteroscedastic errors
    Yan, Fei
    Li, Junpeng
    Jiang, Haosheng
    Zhang, Chongqi
    [J]. AIMS MATHEMATICS, 2023, 8 (11): : 26745 - 26757
  • [37] Estimation of a finite population distribution function based on a linear model with unknown heteroscedastic errors
    Lombardía, MJ
    González-Manteiga, W
    Prada-Sánchez, JM
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 181 - 200
  • [38] Mixture Gaussian process model with Gaussian mixture distribution for big data
    Guan, Yaonan
    He, Shaoying
    Ren, Shuangshuang
    Liu, Shuren
    Li, Dewei
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2024, 253
  • [39] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Yeşim Güney
    Yetkin Tuaç
    Şenay Özdemir
    Olcay Arslan
    [J]. Computational Statistics, 2021, 36 : 805 - 827
  • [40] Robust replicated heteroscedastic measurement error model using heavy-tailed distribution
    Cao, Chunzheng
    Chen, Mengqian
    Ren, Yuqian
    Xu, Yue
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1771 - 1784