Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations

被引:12
|
作者
Liang, Han-Ying [1 ]
Mammitzsch, Volker [2 ]
Steinebach, Josef [3 ]
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
[2] Univ Marburg, Dept Math & Comp Sci, D-35032 Marburg, Germany
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
基金
中国国家自然科学基金;
关键词
D O I
10.1524/stnd.2005.23.3.161
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we discuss the global L-2 error of the nonlinear wavelet estimators of the density function in the Besov space B-pq(s), when the survival times form a stationary alpha-mixing sequence, and prove that the nonlinear wavelet estimators can achieve the optimal rate of convergence, which is similar to the result of Donoho et al. (1996). Also, the optimal convergence rates of the nonlinear wavelet estimators of the hazard rate function in the Besov space B-pq(s) are considered, which had not been discussed by Donoho et al. (1996) for complete data in the i.i.d. case.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 50 条