TURANS EXTREMAL PROBLEM IN RANDOM GRAPHS - FORBIDDING EVEN CYCLES

被引:39
|
作者
HAXELL, PE
KOHAYAKAWA, Y
LUCZAK, T
机构
[1] UNIV SAO PAULO,INST MATEMAT & ESTATIST,BR-05508900 SAO PAULO,BRAZIL
[2] POLISH ACAD SCI,INST MATH,POZNAN,POLAND
关键词
D O I
10.1006/jctb.1995.1035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 0 < gamma less than or equal to 1 and graphs G and H, we write G -->(gamma) H if any gamma-proportion of the edges of G span at least one copy of H in G. As customary, we write C-k for a cycle of length k. We show that, for every fixed integer l greater than or equal to 2 and real gamma > 0, there exists constant C-C(l, gamma) > 0 such that almost every random graph G(n,p) with p=p(n) greater than or equal to Cn(-1+1/(21-1)) satisfies G(n,p) -->(gamma) C-21. In particular, for any fixed 1 greater than or equal to 2 and gamma > 0, this result implies the existence of very sparse graphs G with G -->(gamma) C-21. (C) 1995 Academic Press, Inc.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [1] Turan's extremal problem in random graphs: Forbidding odd cycles
    Haxell, PE
    Kohayakawa, Y
    Luczak, T
    COMBINATORICA, 1996, 16 (01) : 107 - 122
  • [2] On Aa spectral extrema of graphs forbidding even cycles
    Li, Shuchao
    Yu, Yuantian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 668 : 11 - 27
  • [3] An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth
    Y. Kohayakawa
    B. Kreuter
    A. Steger
    Combinatorica, 1998, 18 : 101 - 120
  • [4] An extremal problem for random graphs and the number of graphs with large even-girth
    Kohayakawa, Y
    Kreuter, B
    Steger, A
    COMBINATORICA, 1998, 18 (01) : 101 - 120
  • [5] AN EXTREMAL PROBLEM FOR CYCLES IN HAMILTONIAN GRAPHS
    HENDRY, GRT
    BRANDT, S
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 255 - 262
  • [6] Moore Graphs and Cycles Are Extremal Graphs for Convex Cycles
    Azarija, Jernej
    Klavzar, Sandi
    JOURNAL OF GRAPH THEORY, 2015, 80 (01) : 34 - 42
  • [7] Even cycles in graphs
    Conlon, JG
    JOURNAL OF GRAPH THEORY, 2004, 45 (03) : 163 - 223
  • [8] Forbidding induced even cycles in a graph: Typical structure and counting
    Kim, Jaehoon
    Kuehn, Daniela
    Osthus, Deryk
    Townsend, Timothy
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 131 : 170 - 219
  • [9] Extremal Graphs for Even Linear Forests in Bipartite Graphs
    Yuan, Long-Tu
    Zhang, Xiao-Dong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 5 - 16
  • [10] Random even graphs
    Grimmett, Geoffrey
    Janson, Svante
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):