Extremal Graphs for Even Linear Forests in Bipartite Graphs

被引:1
|
作者
Yuan, Long-Tu [1 ]
Zhang, Xiao-Dong [2 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, SHL MAC, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
bipartite graph; linear forest; extremal graph; Turan number; TURAN NUMBER; PATHS;
D O I
10.7151/dmgt.2429
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Zarankiewicz proposed the problem of determining the maximum number of edges in an (n, m)-bipartite graph containing no complete bipartite graph K-a,K-b. In this paper, we consider a variant of Zarankiewicz's problem and determine the maximum number of edges of an (n, m)-bipartite graph without containing a linear forest consisting of even paths. Moveover, all these extremal graphs are characterized in a recursion way.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 50 条
  • [1] On Extremal Bipartite Tricyclic Graphs
    He, Fangguo
    Zhu, Zhongxun
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (03) : 655 - 672
  • [2] On extremal bipartite bicyclic graphs
    Huang, Jing
    Li, Shuchao
    Zhao, Qin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1242 - 1255
  • [3] On extremal bipartite unicyclic graphs
    Deng, Qingying
    Chen, Haiyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 : 89 - 99
  • [4] On the Turán Numbers of Linear Forests in Bipartite Graphs
    Tianying Xie
    Longtu Yuan
    Chinese Annals of Mathematics, Series B, 2024, 45 (5) : 709 - 732
  • [5] On the Tur■n Numbers of Linear Forests in Bipartite Graphs
    Tianying XIE
    Longtu YUAN
    Chinese Annals of Mathematics,Series B, 2024, (05) : 709 - 732
  • [6] On Extremal Bipartite Graphs with a Given Connectivity
    Chen, Hanlin
    Deng, Hanyuan
    Wu, Renfang
    FILOMAT, 2019, 33 (06) : 1531 - 1540
  • [7] An extremal bandwidth problem for bipartite graphs
    Brigham, RC
    Carrington, JR
    Dutton, RD
    Fiedler, J
    Vitray, RP
    JOURNAL OF GRAPH THEORY, 2000, 35 (04) : 278 - 289
  • [8] AN EXTREMAL PROBLEM FOR PATHS IN BIPARTITE GRAPHS
    GYARFAS, A
    ROUSSEAU, CC
    SCHELP, RH
    JOURNAL OF GRAPH THEORY, 1984, 8 (01) : 83 - 95
  • [9] Extremal bipartite graphs with high girth
    Balbuena, C.
    Garcia-Vazquez, P.
    Marcote, X.
    Valenzuela, J. C.
    ARS COMBINATORIA, 2007, 83 : 3 - 14
  • [10] Bipartite graphs with even spanning trees
    Hoffman, Dean G.
    Walsh, Matt
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 3 - 6