System Risk Importance Analysis Using Bayesian Networks

被引:6
|
作者
Noroozian, Ali [1 ]
Kazemzadeh, Reza Baradaran [1 ]
Niaki, Seyed Taghi Akhavan [2 ]
Zio, Enrico [3 ]
机构
[1] Tarbiat Modares Univ, Dept Ind & Syst Engn, Jalal AleAhmad Highway, Tehran 9821, Iran
[2] Sharif Univ Technol, Dept Ind Engn, Azani Ave, Tehran 1458889694, Iran
[3] Univ Paris Saclay Grande Voie des Vignes, Lab Genie Ind, Cent Supelec, Chaire Syst Sci & Energy Challenge,Fdn Elect Fran, F-92290 Chatenay Malabry, France
关键词
System risk; importance measures; Bayesian networks; fault tree analysis;
D O I
10.1142/S0218539318500043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Importance measures (IMs) are used for risk-informed decision making in system operations, safety, and maintenance. Traditionally, they are computed within fault tree (FT) analysis. Although FT analysis is a powerful tool to study the reliability and structural characteristics of systems, Bayesian networks (BNs) have shown explicit advantages in modeling and analytical capabilities. In this paper, the traditional definitions of IMs are extended to BNs in order to have more capability in terms of system risk modeling and analysis. Implementation results on a case study illustrate the capability of finding the most important components in a system.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Risk analysis of a patient monitoring system using Bayesian Network modeling
    Maglogiannis, I.
    Zafiropoulos, E.
    Platis, A.
    Lambrinoudakis, C.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2006, 39 (06) : 637 - 647
  • [32] Application of Bayesian Networks in distribution system risk management
    Sand, K.
    Catrinu, M. D.
    Kjolle, G. H.
    Bonnoit, S.
    Aupied, J.
    [J]. 2008 10TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, 2008, : 75 - 82
  • [33] Beyond QMRA: Modelling microbial health risk as a complex system using Bayesian networks
    Beaudequin, Denise
    Harden, Fiona
    Roiko, Anne
    Stratton, Helen
    Lemckert, Charles
    Mengersen, Kerrie
    [J]. ENVIRONMENT INTERNATIONAL, 2015, 80 : 8 - 18
  • [34] A Knowledge Management System Using Bayesian Networks
    Ribino, Patrizia
    Oliveri, Antonio
    Lo Re, Giuseppe
    Gaglio, Salvatore
    [J]. AI (ASTERISK) IA 2009: EMERGENT PERSPECTIVES IN ARTIFICIAL INTELLIGENCE, 2009, 5883 : 446 - 455
  • [35] An Insurance Recommendation System Using Bayesian Networks
    Qazi, Maleeha
    Fung, Glenn M.
    Meissner, Katie J.
    Fontes, Eduardo R.
    [J]. PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 274 - 278
  • [36] A system for relevance analysis of performance indicators in higher education using Bayesian networks
    Antonio Fernández
    María Morales
    Carmelo Rodríguez
    Antonio Salmerón
    [J]. Knowledge and Information Systems, 2011, 27 : 327 - 344
  • [37] Empirical analysis of an on-line adaptive system using a mixture of Bayesian networks
    Kitakoshi, Daisuke
    Shioya, Hiroyuki
    Nakano, Ryohei
    [J]. INFORMATION SCIENCES, 2010, 180 (15) : 2856 - 2874
  • [38] Vehicle Traffic and Flood Monitoring with Reroute System Using Bayesian Networks Analysis
    Alipio, Melchizedek I.
    Bayanay, Jess Ross R.
    Casantusan, Alex O.
    Dequeros, Abigail A.
    [J]. 2017 IEEE 6TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE), 2017,
  • [39] A system for relevance analysis of performance indicators in higher education using Bayesian networks
    Fernandez, Antonio
    Morales, Maria
    Rodriguez, Carmelo
    Salmeron, Antonio
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2011, 27 (03) : 327 - 344
  • [40] Unsupervised system for diagnosis in LTE networks using Bayesian networks
    Flores-Martos, L.
    Gomez-Andrades, A.
    Barco, R.
    Serrano, I.
    [J]. 2015 IEEE 81ST VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2015,