Learning networks in rainfall estimation

被引:6
|
作者
Trafalis, Theodore B. [1 ]
Santosa, Budi [1 ]
Richman, Michael B. [2 ]
机构
[1] Univ Oklahoma, Sch Ind Engn, 202 W Boyd,CEC 124, Norman, OK 73019 USA
[2] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
关键词
Artificial neural networks; support vector machines; kernel functions; rainfall estimation; radar;
D O I
10.1007/s10287-005-0026-0
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This paper utilizes Artificial Neural Networks (ANNs), standard Support Vector Regression (SVR), Least-Squares Support Vector Regression (LS-SVR), linear regression (LR) and a rain rate (RR) formula that meteorologists use, to estimate rainfall. A unique source of ground truth rainfall data is the Oklahoma Mesonet. With the advent of the WSR-88D network of radars data mining is feasible for this study. The reflectivity measurements from the radar are used as inputs for the techniques tested. LS-SVR generalizes better than ANNs, linear regression and a rain rate formula in rainfall estimation and for rainfall detection, SVR has a better performance than the other techniques.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 50 条
  • [31] Learning ensembles of deep neural networks for extreme rainfall event detection
    Folino, Gianluigi
    Guarascio, Massimo
    Chiaravalloti, Francesco
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14): : 10347 - 10360
  • [32] Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images
    Notarangelo, Nicla Maria
    Hirano, Kohin
    Albano, Raffaele
    Sole, Aurelia
    [J]. WATER, 2021, 13 (05)
  • [33] Rainfall estimation in the Chikugo River Basin by Atmospheric downscaling using artificial networks
    Dept. of Urban/Environmental Eng., Tokyo, Japan
    不详
    不详
    不详
    [J]. Mem. Fac. Eng. Kyushu Univ., 2 (85-96):
  • [34] Estimation of rainfall fields using commercial microwave communication networks of variable density
    Zinevich, Artem
    Alpert, Pinhas
    Messer, Hagit
    [J]. ADVANCES IN WATER RESOURCES, 2008, 31 (11) : 1470 - 1480
  • [35] RAINFALL ESTIMATION FROM SPACEBORNE AND GROUND BASED RADARS USING NEURAL NETWORKS
    Chandrasekar, V.
    Ramanujam, K. Srinivasa
    Chen, Haonan
    Le, Minda
    Alqudah, Amin
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 4966 - 4969
  • [36] EFFECTIVE RAINFALL ESTIMATION
    MLS, J
    [J]. JOURNAL OF HYDROLOGY, 1980, 45 (3-4) : 305 - 311
  • [37] Optimizing Radar-Based Rainfall Estimation Using Machine Learning Models
    Hassan, Diar
    Isaac, George A.
    Taylor, Peter A.
    Michelson, Daniel
    [J]. REMOTE SENSING, 2022, 14 (20)
  • [38] Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models
    Lee, Jimin
    Lee, Seoro
    Hong, Jiyeong
    Lee, Dongjun
    Bae, Joo Hyun
    Yang, Jae E.
    Kim, Jonggun
    Lim, Kyoung Jae
    [J]. WATER, 2021, 13 (03)
  • [39] A Deep Learning based architecture for rainfall estimation integrating heterogeneous data sources
    Folino, Gianluigi
    Guarascio, Massimo
    Chiaravalloti, Francesco
    Gabriele, Salvatore
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [40] Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
    Canchala-Nastar, Teresita
    Carvajal-Escobar, Yesid
    Alfonso-Morales, Wilfredo
    Loaiza Ceron, Wilmar
    Caicedo, Eduardo
    [J]. DATA IN BRIEF, 2019, 26