Learning networks in rainfall estimation

被引:6
|
作者
Trafalis, Theodore B. [1 ]
Santosa, Budi [1 ]
Richman, Michael B. [2 ]
机构
[1] Univ Oklahoma, Sch Ind Engn, 202 W Boyd,CEC 124, Norman, OK 73019 USA
[2] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
关键词
Artificial neural networks; support vector machines; kernel functions; rainfall estimation; radar;
D O I
10.1007/s10287-005-0026-0
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This paper utilizes Artificial Neural Networks (ANNs), standard Support Vector Regression (SVR), Least-Squares Support Vector Regression (LS-SVR), linear regression (LR) and a rain rate (RR) formula that meteorologists use, to estimate rainfall. A unique source of ground truth rainfall data is the Oklahoma Mesonet. With the advent of the WSR-88D network of radars data mining is feasible for this study. The reflectivity measurements from the radar are used as inputs for the techniques tested. LS-SVR generalizes better than ANNs, linear regression and a rain rate formula in rainfall estimation and for rainfall detection, SVR has a better performance than the other techniques.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 50 条
  • [1] THE POTENTIAL OF SMARTLNB NETWORKS FOR RAINFALL ESTIMATION
    Giannetti, Filippo
    Moretti, Marco
    Reggiannini, Ruggero
    Petrolino, Antonio
    Bacci, Giacomo
    Adirosi, Elisa
    Baldini, Luca
    Facheris, Luca
    Melani, Samantha
    Ortolani, Alberto
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 120 - 124
  • [2] Neural networks in satellite rainfall estimation
    Tapiador, FJ
    Kidd, C
    Hsu, KL
    Marzano, F
    [J]. METEOROLOGICAL APPLICATIONS, 2004, 11 (01) : 83 - 91
  • [3] Rainfall estimation using transductive learning
    de Freitas, Greice Martins
    Heuminski de Avila, Ana Maria
    Papa, Joao Paulo
    [J]. CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 631 - +
  • [4] Using Machine Learning Techniques for Rainfall Estimation Based on Microwave Links of Mobile Telecommunication Networks
    Kamtchoum E.V.
    Nzeukou Takougang A.C.
    Djamegni C.T.
    [J]. SN Computer Science, 4 (1)
  • [5] Investigations in radar rainfall estimation using neural networks
    Li, W
    Chandrasekar, V
    Xu, G
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2347 - 2349
  • [6] Multigraph Convolutional Networks for Rainfall Estimation in Complex Terrain
    Huang, Zhicheng
    Derin, Yagmur
    Kirstetter, Pierre-Emmanuel
    Li, Yifu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Estimation of rainfall based on MODIS using neural networks
    Leng, Chuang
    Yi, Shanzhen
    Xie, Wenhao
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [8] Neural networks and tree classifiers -: An application to rainfall estimation
    Bergès, JC
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 887 - 889
  • [9] Estimation of Monthly Rainfall using Machine Learning Approaches
    Goyal, Hemlata
    Sharma, Chilka
    Joshi, Nisheeth
    [J]. 2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN CONTROL, COMMUNICATION AND INFORMATION SYSTEMS (ICICCI-2017), 2017, : 230 - 235
  • [10] A Convolutional Neural Networks Approach to Audio Classification for Rainfall Estimation
    Avanzato, Roberta
    Beritelli, Francesco
    Di Franco, Francesco
    Puglisi, Valerio Francesco
    [J]. PROCEEDINGS OF THE 2019 10TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS - TECHNOLOGY AND APPLICATIONS (IDAACS), VOL. 1, 2019, : 285 - 289