WEYL-TITCHMARSH THEORY FOR STURM-LIOUVILLE OPERATORS WITH DISTRIBUTIONAL POTENTIALS
被引:76
|
作者:
论文数: 引用数:
h-index:
机构:
Eckhardt, Jonathan
[1
]
Gesztesy, Fritz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Math, Columbia, MO 65211 USAUniv Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
Gesztesy, Fritz
[2
]
Nichols, Roger
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee Chattanooga, Math Dept, Dept 6956, Chattanooga, TN 37403 USAUniv Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
Nichols, Roger
[3
]
Teschl, Gerald
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
Int Erwin Schrodinger, Inst Math Phys, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
Teschl, Gerald
[1
,4
]
机构:
[1] Univ Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Tennessee Chattanooga, Math Dept, Dept 6956, Chattanooga, TN 37403 USA
[4] Int Erwin Schrodinger, Inst Math Phys, A-1090 Vienna, Austria
Sturm-Liouville operators;
distributional coefficients;
Weyl-Titchmarsh theory;
Friedrichs and Krein extensions;
positivity preserving and improving semigroups;
D O I:
10.7494/OpMath.2013.33.3.467
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We systematically develop Weyl-Titchmarsh theory for singular differential operators on arbitrary intervals (a; b) subset of R associated with rather general differential expressions of the type Tf = 1/r (-(p[f' + sf])' + sp [f ' + sf] + qf ), where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a; b), with p not equal 0, r > 0 a.e. on (a, b), and p(-1), q, r, s is an element of L-loc(1) ((a, b); d x), and f is supposed to satisfy f is an element of AC (loc) ((a, b)), p [f' + sf] is an element of AC (loc) ((a, b))
机构:
Univ Stockholm, Dept Math, S-10691 Stockholm, Sweden
St Petersburg State Univ, Dept Phys, St Petersburg 198904, Russia
LTH, Dept Math, S-22100 Lund, SwedenUniv Stockholm, Dept Math, S-10691 Stockholm, Sweden
Kurasov, Pavel
Luger, Annemarie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stockholm, Dept Math, S-10691 Stockholm, Sweden
LTH, Dept Math, S-22100 Lund, SwedenUniv Stockholm, Dept Math, S-10691 Stockholm, Sweden