WEYL-TITCHMARSH THEORY FOR STURM-LIOUVILLE OPERATORS WITH DISTRIBUTIONAL POTENTIALS

被引:76
|
作者
Eckhardt, Jonathan [1 ]
Gesztesy, Fritz [2 ]
Nichols, Roger [3 ]
Teschl, Gerald [1 ,4 ]
机构
[1] Univ Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Tennessee Chattanooga, Math Dept, Dept 6956, Chattanooga, TN 37403 USA
[4] Int Erwin Schrodinger, Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Sturm-Liouville operators; distributional coefficients; Weyl-Titchmarsh theory; Friedrichs and Krein extensions; positivity preserving and improving semigroups;
D O I
10.7494/OpMath.2013.33.3.467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We systematically develop Weyl-Titchmarsh theory for singular differential operators on arbitrary intervals (a; b) subset of R associated with rather general differential expressions of the type Tf = 1/r (-(p[f' + sf])' + sp [f ' + sf] + qf ), where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a; b), with p not equal 0, r > 0 a.e. on (a, b), and p(-1), q, r, s is an element of L-loc(1) ((a, b); d x), and f is supposed to satisfy f is an element of AC (loc) ((a, b)), p [f' + sf] is an element of AC (loc) ((a, b))
引用
收藏
页码:467 / 563
页数:97
相关论文
共 50 条