TWO-DIMENSIONAL INVERSE SCATTERING - COMPACTNESS OF THE GENERALIZED MARCHENKO OPERATOR

被引:5
|
作者
CHENEY, M [1 ]
机构
[1] STANFORD UNIV,DEPT MATH,STANFORD,CA 94305
关键词
D O I
10.1063/1.526562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:743 / 752
页数:10
相关论文
共 50 条
  • [1] COMPACTNESS OF THE TWO-DIMENSIONAL RECTANGULAR HARDY OPERATOR
    Stepanov, Vladimir Dmitrievich
    Ushakova, Elena Pavlovna
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 535 - 549
  • [2] TWO-DIMENSIONAL INVERSE SCATTERING FOR QUASI-LINEAR BIHARMONIC OPERATOR
    Harju, Markus
    Kultima, Jaakko
    Serov, Valery
    Tyni, Teemu
    [J]. INVERSE PROBLEMS AND IMAGING, 2021, 15 (05) : 1015 - 1033
  • [3] TWO-DIMENSIONAL SCHRODINGER OPERATOR - INVERSE SCATTERING TRANSFORM AND EVOLUTIONAL EQUATIONS
    NOVIKOV, SP
    VESELOV, AP
    [J]. PHYSICA D, 1986, 18 (1-3): : 267 - 273
  • [4] Boundedness and Compactness of the Two-Dimensional Rectangular Hardy Operator
    Stepanov, V. D.
    Ushakova, E. P.
    [J]. DOKLADY MATHEMATICS, 2022, 106 (02) : 361 - 365
  • [5] Boundedness and Compactness of the Two-Dimensional Rectangular Hardy Operator
    V. D. Stepanov
    E. P. Ushakova
    [J]. Doklady Mathematics, 2022, 106 : 361 - 365
  • [6] Inverse fixed energy scattering problem for the two-dimensional nonlinear Schrodinger operator
    Fotopoulos, Georgios
    Serov, Valery
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (04) : 692 - 710
  • [7] On a two-dimensional inverse scattering problem for a dielectric
    Altundag, Ahmet
    Kress, Rainer
    [J]. APPLICABLE ANALYSIS, 2012, 91 (04) : 757 - 771
  • [8] Inverse scattering of a two-dimensional periodic conductor
    Ho, CS
    Chiu, CC
    Lai, E
    [J]. 2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 449 - 452
  • [9] THE INVERSE SPECTRAL PROBLEM FOR THE TWO-DIMENSIONAL SCHROEDINGER OPERATOR
    MANAKOV, SV
    GRINEVICH, P
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1987, 28 (1-2) : 222 - 222
  • [10] THE TWO-DIMENSIONAL DIRECT AND INVERSE SCATTERING PROBLEMS WITH GENERALIZED OBLIQUE DERIVATIVE BOUNDARY CONDITION
    Wang, Haibing
    Liu, Jijun
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (02) : 313 - 334