On a two-dimensional inverse scattering problem for a dielectric

被引:19
|
作者
Altundag, Ahmet [1 ]
Kress, Rainer [1 ]
机构
[1] Univ Gottingen, Inst Numer & Angew Math, D-37083 Gottingen, Germany
关键词
inverse scattering; Helmholtz equation; transmission problem; single-layer approach; nonlinear integral equations; iterative methods; uniqueness; NONLINEAR INTEGRAL-EQUATIONS; NUMERICAL-SOLUTION; OBSTACLE;
D O I
10.1080/00036811.2011.619981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse problem under consideration is to reconstruct the shape of a homogeneous dielectric infinite cylinder from the far-field pattern for scattering of a time-harmonic E-polarized electromagnetic plane wave. We propose an inverse algorithm that extends the approach suggested by Johansson and Sleeman [T. Johansson and B. Sleeman, Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern, IMA J. Appl. Math. 72 (2007), pp. 96-112] for the case of the inverse problem for a perfectly conducting scatterer. It is based on a system of nonlinear boundary integral equations associated with a single-layer potential approach to solve the forward scattering problem. We present the mathematical foundations of the method and exhibit its feasibility by numerical examples.
引用
收藏
页码:757 / 771
页数:15
相关论文
共 50 条
  • [1] An iterative method for a two-dimensional inverse scattering problem for a dielectric
    Altundag, Ahmet
    Kress, Rainer
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2012, 20 (04): : 575 - 590
  • [2] Application of the method of approximate inverse to a two-dimensional inverse scattering problem
    Abdullah, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S815 - S816
  • [3] Iterative solution of inverse scattering for a two-dimensional dielectric object
    Lin, HT
    Kiang, YW
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1996, 7 (01) : 25 - 32
  • [4] Inverse scattering of a two-dimensional dielectric object by genetic algorithms
    Lin, CJ
    Chiu, CC
    Wu, YD
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2003, E86C (11): : 2230 - 2236
  • [5] Two-dimensional linear inverse scattering for dielectric and magnetic anomalies
    Persico, Raffaele
    Soldovieri, Francesco
    [J]. NEAR SURFACE GEOPHYSICS, 2011, 9 (03) : 287 - 295
  • [6] The two-dimensional electromagnetic inverse scattering problem for chiral media
    Gerlach, T
    [J]. INVERSE PROBLEMS, 1999, 15 (06) : 1663 - 1675
  • [7] Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem
    V. A. Burov
    N. V. Alekseenko
    O. D. Rumyantseva
    [J]. Acoustical Physics, 2009, 55 : 843 - 856
  • [8] Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem
    Burov, V. A.
    Alekseenko, N. V.
    Rumyantseva, O. D.
    [J]. ACOUSTICAL PHYSICS, 2009, 55 (06) : 843 - 856
  • [9] Inverse Scattering Problem of a Two- Dimensional Dielectric Cylinder in Slab Medium
    Chen, Chien-Hung
    Huang, Chung-Hsin
    Sun, Chi Hsien
    Li, Ching-Lieh
    Lai, Pin-Ru
    Wang, Guh-Chyi
    [J]. 2014 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, TOKYO (EMC'14/TOKYO), 2014, : 821 - 823
  • [10] A Two-Dimensional Inverse Problem of Viscoelasticity
    Romanov, V. G.
    [J]. DOKLADY MATHEMATICS, 2011, 84 (02) : 649 - 652