Parameter Estimation for Type III Discrete Weibull Distribution: A Comparative Study

被引:5
|
作者
Barbiero, Alessandro [1 ]
机构
[1] Univ Milan, Dept Econ Management & Quantitat Methods, Via Conservatorio 7, I-20122 Milan, Italy
关键词
D O I
10.1155/2013/946562
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The type III discreteWeibull distribution can be used in reliability analysis for modeling failure data such as the number of shocks, cycles, or runs a component or a structure can overcome before failing. This paper describes three methods for estimating its parameters: two customary techniques and a technique particularly suitable for discrete distributions, which, in contrast to the two other techniques, provides analytical estimates, whose derivation is detailed here. The techniques' peculiarities and practical limits are outlined. A Monte Carlo simulation study has been performed to assess the statistical performance of these methods for different parameter combinations and sample sizes and then give some indication for their mindful use. Two applications of real data are provided with the aim of showing how the type III discrete Weibull distribution can fit real data, even better than other popular discrete models, and how the inferential procedures work. A software implementation of the model is also provided.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] COMPARISON OF PARAMETER ESTIMATION METHODS IN WEIBULL DISTRIBUTION
    Koksal Babacan, Esin
    Kaya, Samet
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (03): : 1609 - 1621
  • [12] Bayesian Estimation and Prediction for Discrete Weibull Distribution
    Duangsaphon, Monthira
    Santimalai, Rateeya
    Volodin, Andrei
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (11) : 4693 - 4703
  • [13] Bayesian Estimation and Prediction for Discrete Weibull Distribution
    Monthira Duangsaphon
    Rateeya Santimalai
    Andrei Volodin
    Lobachevskii Journal of Mathematics, 2023, 44 : 4693 - 4703
  • [14] Computation approaches for parameter estimation of Weibull distribution
    Chu, Yunn-Kuang
    Ke, Jau-Chuan
    Mathematical and Computational Applications, 2012, 17 (01) : 39 - 47
  • [16] OPTIMUM ESTIMATION OF THE PARAMETER OF THE GENERALIZED WEIBULL DISTRIBUTION
    TARTAKOWSKY, AG
    RADIOTEKHNIKA I ELEKTRONIKA, 1988, 33 (05): : 986 - 991
  • [17] Optimum estimation of the parameter of the generalized Weibull distribution
    Tartakovskiy, A.G.
    Soviet journal of communications technology & electronics, 1988, 33 (10): : 84 - 89
  • [18] Parameter estimation methods for 3-parameter Weibull distribution
    Zhao, Bingfeng
    Wu, Sujun
    ENGINEERING STRUCTURAL INTEGRITY: RESEARCH, DEVELOPMENT AND APPLICATION, VOLS 1 AND 2, 2007, : 1170 - 1173
  • [19] PARAMETER ESTIMATION OF THREE-PARAMETER WEIBULL DISTRIBUTION.
    Mimaki, Toshitaro
    Yanagimoto, Samon
    Takashima, Hironori
    Nippon Steel Technical Report, 1987, (32): : 18 - 23
  • [20] A comparative study for parameter estimation of the Weibull distribution in a small sample size: An application to spring fatigue failure data
    Yang, Xiaoyu
    Xie, Liyang
    Yang, Yifeng
    Zhao, Bingfeng
    Li, Yuan
    QUALITY ENGINEERING, 2023, 35 (04) : 553 - 565