Design, preparation, application of advanced array structured materials and their action mechanism analyses for high performance lithium-sulfur batteries

被引:0
|
作者
Nanping Deng [1 ]
Xiaofan Feng [1 ]
Yongbing Jin [1 ]
Zhaozhao Peng [1 ]
Yang Feng [2 ]
Ying Tian [1 ]
Yong Liu [1 ]
Lu Gao [1 ]
Weimin Kang [1 ]
Bowen Cheng [1 ]
机构
[1] State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University
[2] Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
摘要
Lithium-sulfur battery(LSB) has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems. The widely commercial application and development of LSB is mainly hindered by serious “shuttle effect” of lithium polysulfides(Li PSs), slow reaction kinetics, notorious lithium dendrites, etc. In various structures of LSB materials, array structured materials, possessing the composition of ordered micro units with the same or similar characteristics of each unit, present excellent application potential for various secondary cells due to some merits such as immobilization of active substances, high specific surface area, appropriate pore sizes, easy modification of functional material surface, accommodated huge volume change,enough facilitated transportation for electrons/lithium ions, and special functional groups strongly adsorbing Li PSs. Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above. In this review, recent progresses and developments on array structured materials applied in LSBs including preparation ways, collaborative structural designs based on array structures, and action mechanism analyses in improving electrochemical performance and safety are summarized. Meanwhile, we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances. Lastly, some directions and prospects about preparation ways, functional modifications, and practical applications of array structured materials in LSBs are generalized. We hope the review can attract more researchers’ attention and bring more studying on array structured materials for other secondary batteries including LSB.
引用
收藏
页码:266 / 303
页数:38
相关论文
共 50 条
  • [11] Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries
    Dong, Chunwei
    Gao, Wang
    Jin, Bo
    Jiang, Qing
    ISCIENCE, 2018, 6 : 151 - 198
  • [12] Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries
    Ding, Bing
    Xu, Guiyin
    Shen, Laifa
    Nie, Ping
    Hu, Pengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) : 14280 - 14285
  • [13] Rational design of the cathode catalysts for high performance lithium-sulfur batteries
    Wang, Tianshuai
    Feng, Xiang
    Lin, Chao
    Zhang, Qianfan
    CHEMICAL PHYSICS REVIEWS, 2023, 4 (01):
  • [14] Recent progress in polymer materials for advanced lithium-sulfur batteries
    Zhu, Jiadeng
    Zhu, Pei
    Yan, Chaoyi
    Dong, Xia
    Zhang, Xiangwu
    PROGRESS IN POLYMER SCIENCE, 2019, 90 : 118 - 163
  • [15] A Review of Heteroatom Doped Materials for Advanced Lithium-Sulfur Batteries
    Wang, Jianli
    Han, Wei-Qiang
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [16] MXene-based materials: Synthesis, structure and their application for advanced lithium-sulfur batteries
    Liao, Leiping
    Wang, Shanxing
    Duan, Huanhuan
    Deng, Yuanfu
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [17] Facile preparation of fullerene nanorods for high-performance lithium-sulfur batteries
    An, Yongling
    Tian, Yuan
    Fei, Huifang
    Zeng, Guifang
    Duan, Hongwei
    Zhang, Sichao
    Zhou, Peng
    Ci, Lijie
    Feng, Jinkui
    MATERIALS LETTERS, 2018, 228 : 175 - 178
  • [18] Multifunctional Sandwich-Structured Electrolyte for High-Performance Lithium-Sulfur Batteries
    Qu, Hongtao
    Zhang, Jianjun
    Du, Aobing
    Chen, Bingbing
    Chai, Jingchao
    Xue, Nan
    Wang, Longlong
    Qiao, Lixin
    Wang, Chen
    Zang, Xiao
    Yang, Jinfeng
    Wang, Xiaogang
    Cui, Guanglei
    ADVANCED SCIENCE, 2018, 5 (03):
  • [19] Advanced Separator Materials for Enhanced Electrochemical Performance of Lithium-Sulfur Batteries: Progress and Prospects
    Lin, Pengshan
    Gao, Bo
    Lan, Xin
    Wang, Ming
    Li, Jiahao
    Fu, Haiyang
    LANGMUIR, 2024, 40 (31) : 15996 - 16029
  • [20] Recent Progress in Framework Materials for High-Performance Lithium-Sulfur Batteries
    Chen, Changyun
    Zhang, Mengfei
    Chen, Quanzhan
    Duan, Haibao
    Liu, Suli
    CHEMICAL RECORD, 2023, 23 (06):