A review of solid-state lithium metal batteries through in-situ solidification

被引:0
|
作者
Pan Xu [1 ]
Zong-Yao Shuang [1 ]
Chen-Zi Zhao [1 ]
Xue Li [2 ]
Li-Zhen Fan [3 ]
Aibing Chen [4 ]
Haoting Chen [5 ]
Elena Kuzmina [6 ]
Elena Karaseva [6 ]
Vladimir Kolosnitsyn [6 ]
Xiaoyuan Zeng [2 ]
Peng Dong [2 ]
Yingjie Zhang [2 ]
Mingpei Wang [5 ]
Qiang Zhang [1 ,7 ,8 ]
机构
[1] Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University
[2] National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science
[3] Institute of Advanced Materials and Technology, University of Science and Technology Beijing
[4] College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology
[5] Ordos Carbon Neutral Research and Application Co., Ltd.  6. Ufa Institute of Chemistry UFRC RAS
[6] Institute for Carbon Neutrality, Tsinghua University
[7] Shanxi Research Institute for Clean Energy, Tsinghua University
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
High-energy-density lithium metal batteries are the next-generation battery systems of choice, and replacing the flammable liquid electrolyte with a polymer solid-state electrolyte is a prominent conduct towards realizing the goal of high-safety and high-specific-energy devices. Unfortunately, the inherent intractable problems of poor solid–solid contacts between the electrode/electrolyte and the growth of Li dendrites hinder their practical applications. The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase, including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes, and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to enhance the high-voltage stability of polymer electrolytes. This review firstly elaborates the history of in-situ solidification for solid-state batteries, and then focuses on the synthetic methods of solidified electrolytes. Furthermore, the recent progress of in-situ solidification technology from both the design of polymer electrolytes and the construction of artificial interphase is summarized, and the importance of in-situ solidification technology in enhancing safety is emphasized. Finally,prospects, emerging challenges, and practical applications of in-situ solidification are envisioned.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条
  • [1] A review of solid-state lithium metal batteries through in-situ solidification
    Pan Xu
    Zong-Yao Shuang
    Chen-Zi Zhao
    Xue Li
    Li-Zhen Fan
    Aibing Chen
    Haoting Chen
    Elena Kuzmina
    Elena Karaseva
    Vladimir Kolosnitsyn
    Xiaoyuan Zeng
    Peng Dong
    Yingjie Zhang
    Mingpei Wang
    Qiang Zhang
    Science China Chemistry, 2024, 67 (1) : 67 - 86
  • [2] A review of solid-state lithium metal batteries through in-situ solidification
    Xu, Pan
    Shuang, Zong-Yao
    Zhao, Chen-Zi
    Li, Xue
    Fan, Li-Zhen
    Chen, Aibing
    Chen, Haoting
    Kuzmina, Elena
    Karaseva, Elena
    Kolosnitsyn, Vladimir
    Zeng, Xiaoyuan
    Dong, Peng
    Zhang, Yingjie
    Wang, Mingpei
    Zhang, Qiang
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (01) : 67 - 86
  • [3] In situ polymerization of solid-state polymer electrolytes for lithium metal batteries: a review
    Zou, Shuhao
    Yang, Yan
    Wang, Jiarui
    Zhou, Xuanyi
    Wan, Xuanhong
    Zhu, Min
    Liu, Jun
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (13) : 4426 - 4460
  • [4] Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries
    Mu, Kexin
    Wang, Dai
    Dong, Weiliang
    Liu, Qiang
    Song, Zhennuo
    Xu, Weijian
    Yao, Pingping
    Chen, Yin'an
    Yang, Bo
    Li, Cuihua
    Tian, Lei
    Zhu, Caizhen
    Xu, Jian
    ADVANCED MATERIALS, 2023, 35 (47)
  • [5] In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries
    Sun, Haiming
    Liu, Qiunan
    Chen, Jingzhao
    Li, Yanshuai
    Ye, Hongjun
    Zhao, Jun
    Geng, Lin
    Dai, Qiushi
    Yang, Tingting
    Li, Hui
    Wang, Zaifa
    Zhang, Liqiang
    Tang, Yongfu
    Huang, Jianyu
    ACS NANO, 2021, 15 (12) : 19070 - 19079
  • [6] Toward safer solid-state lithium metal batteries: a review
    Wang, Zhenkang
    Liu, Jie
    Wang, Mengfan
    Shen, Xiaowei
    Qian, Tao
    Yan, Chenglin
    NANOSCALE ADVANCES, 2020, 2 (05): : 1828 - 1836
  • [7] In-Situ Characterization for Solid Electrolyte Deformations in a Lithium Metal Solid-State Battery
    Li, Chuanwei
    Yang, Siyuan
    Xin, Lipan
    Wang, Zhiyong
    Xu, Qiang
    Li, Linan
    Wang, Shibin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
  • [8] Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating
    Wang, Michael J.
    Carmona, Eric
    Gupta, Arushi
    Albertus, Paul
    Sakamoto, Jeff
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Wang, Qinglei
    Dong, Tiantian
    Zhou, Qian
    Cui, Zili
    Shangguan, Xuehui
    Lu, Chenglong
    Lv, Zhaolin
    Chen, Kai
    Huang, Lang
    Zhang, Huanrui
    Cui, Guanglei
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (05) : 934 - 942
  • [10] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China Chemistry, 2022, 65 : 934 - 942