In situ polymerization of solid-state polymer electrolytes for lithium metal batteries: a review

被引:4
|
作者
Zou, Shuhao [1 ]
Yang, Yan [1 ]
Wang, Jiarui [1 ]
Zhou, Xuanyi [1 ]
Wan, Xuanhong [1 ]
Zhu, Min [1 ]
Liu, Jun [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH IONIC-CONDUCTIVITY; INTERFACIAL COMPATIBILITY; DENDRITE-FREE; PERFORMANCE; INTERPHASE; TRANSPORT; STRATEGY; NETWORK; FACILE; LAYER;
D O I
10.1039/d4ee00822g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical application of commercialized lithium-ion batteries (LIBs) currently faces challenges due to using liquid electrolytes (LEs), including limited energy density and insufficient safety performance. The combined application of solid-state polymer electrolytes (SPEs) and lithium metal anodes (LMAs) can address these challenges and has received extensive attention from researchers recently. There are various strategies for assembling SPEs into lithium metal batteries (LMBs), but the most promising strategy is the in situ polymerization strategy. The in situ polymerization strategy can achieve good interfacial contact between SPEs and electrodes, significantly reducing the interfacial resistance. This paper comprehensively reviews the latest in situ polymerization strategies for polymer solid-state lithium metal batteries (PSSLMBs), including the polymer system's design, the polymerization strategy's innovation, and the characterization of the whole cell. We summarize the components of the in situ polymerization system, such as monomers, initiators, lithium salts, and backbone materials, and focus on the methods to improve the ionic conductivity and further enhance the safety performance of SPEs, including strategies such as the addition of inorganic nanoparticles, inorganic-polymer hybridization, and the construction of artificial SEIs. The PSSLMBs prepared by the in situ polymerization strategy have good application prospects and potential to become the next generation of commercialized lithium batteries.
引用
收藏
页码:4426 / 4460
页数:35
相关论文
共 50 条
  • [1] A reflection on polymer electrolytes for solid-state lithium metal batteries
    Song, Ziyu
    Chen, Fangfang
    Martinez-Ibanez, Maria
    Feng, Wenfang
    Forsyth, Maria
    Zhou, Zhibin
    Armand, Michel
    Zhang, Heng
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] A reflection on polymer electrolytes for solid-state lithium metal batteries
    Ziyu Song
    Fangfang Chen
    Maria Martinez-Ibañez
    Wenfang Feng
    Maria Forsyth
    Zhibin Zhou
    Michel Armand
    Heng Zhang
    [J]. Nature Communications, 14
  • [3] Polymer electrolytes and interfaces in solid-state lithium metal batteries
    Ding, Peipei
    Lin, Zhiyuan
    Guo, Xianwei
    Wu, Lingqiao
    Wang, Yongtao
    Guo, Hongxia
    Li, Liangliang
    Yu, Haijun
    [J]. MATERIALS TODAY, 2021, 51 : 449 - 474
  • [4] Toward Practical Solid-State Polymer Lithium Batteries by In Situ Polymerization Process: A Review
    Liu, Qi
    Wang, Li
    He, Xiangming
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (30)
  • [5] A review on modified polymer composite electrolytes for solid-state lithium batteries
    Luo, Shengbin
    Liu, Xia
    Gao, Lu
    Deng, Nanping
    Sun, Xiaobin
    Li, Yanan
    Zeng, Qiang
    Wang, Hao
    Cheng, Bowen
    Kang, Weimin
    [J]. SUSTAINABLE ENERGY & FUELS, 2022, 6 (22): : 5019 - 5044
  • [6] Research Progresses of in situ Polymerized Electrolytes for Solid-state Lithium Metal Batteries
    Xu Pan
    Kong Weijin
    Huang Xueyan
    Sun Shuo
    Huang Wenze
    Zhao Chenzi
    [J]. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (05):
  • [7] Structural Design of Composite Polymer Electrolytes for Solid-state Lithium Metal Batteries
    Liao, Wenchao
    Liu, Chen
    [J]. CHEMNANOMAT, 2021, 7 (11) : 1177 - 1187
  • [8] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Snehashis Choudhury
    Sanjuna Stalin
    Duylinh Vu
    Alexander Warren
    Yue Deng
    Prayag Biswal
    Lynden A. Archer
    [J]. Nature Communications, 10
  • [10] Perovskite Solid-State Electrolytes for Lithium Metal Batteries
    Yan, Shuo
    Yim, Chae-Ho
    Pankov, Vladimir
    Bauer, Mackenzie
    Baranova, Elena
    Weck, Arnaud
    Merati, Ali
    Abu-Lebdeh, Yaser
    [J]. BATTERIES-BASEL, 2021, 7 (04):